UNCLASSIFIED # AD NUMBER AD037710 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Operational and Administrative Use; Jun 1954. Other requests shall be referred to Hqs. Air Force Flight Test Center, Edwards AFB, CA. **AUTHORITY** AFMC ltr, 19 Feb 2002 Armed Services Technical Information Agency Reproduced DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, OHIO This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Buchmant Barvice Center. Knott Building, Dayton 2, Ohio. CLASSIFICATION CHANGED TO UNCLASSIFIED BY AUTHORITY OF ASTIA RECLASS. BULLETIN Date 28 May 1956 Signed Orthur & Eseech OFFICE SECURITY ADVISOR List No. 81 NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW. # CONFIDENTIAL # HEADQUARTERS AIR FORCE FLIGHT TEST CENTER EDWARDS AIR FORCE BASE CALIFORNIA FTDTP 23 Aug 54 SUBJECT: Ravision of Fig. 4 in AFTR No. AFFTC 54-16 By 1/Lt Donald H. Wooley TO: All Concerned Investigation of additional data disclosed that the attached Maximum Level Flight Airspeed curve should replace the corresponding curve on page 6 in Appendix I of AF Technical Report No. AFFTC 54-16 to more accurately represent the capabilities of the F-86F aircraft with PTI modifications. The Maximum Calibrated Airspeed Chart on page three of the body of the above report should therefore be changed to read 258 knots with PTI and 252 knots without PTI at 45,000 feet due to this revision. The corresponding corrected test data sheet from page 12 in Appendix III is included. FOR THE COMMANDER: Incls as shown H. A. HANES Colonel, USAF Director, Flight Test and Development 54AA 58025 54-2-4131 54AA 58025 6 CONFIDENTIAL | make it for himself than | | | | | | 14 | | | | |--|--|--|------------------------------------|--|-------------------------------------|--------------------|---|--|--| | nass i | | | | | NSTRU | MERCE | BRIDE | ; | | | | | F-868 | | | | | | | | | Total | 10.6 | £ 4.1. | A MANAGERIA | . (1944)
1. (194 4) | 42.1 .1 .7 MM. | | 6500 E | - / / | er are | | | ł | Carlo de Carlo | A BU | | | ··· | | | - while in the second | | Configuration
Flight No.—RVN No. | 1111 | 11 4 8 8 3 6 1,5 | 77.4 | 121 | | | | | 44 560 11 | | Time Min | 17.18 | 1188 | 1.49 | 12.09 | | | [| 1 | Barry A. A. C. C. C. | | IAS -, knotn | 1356 | 13615 | 13737 | 1344.5 | | | 5. tr Jr, 11 | A COMPANIES OF PRINCIPLES | The estimate of the second | | Altitude - ft | 129870 | 159780 | 29980 | 139780 | | 5 - 12 - 500 1 1 1 | | | hera | | Altituda fi
Alt Temp G | 1:-7 | 1 | 1-3 | $\Gamma = I$ | | | | | T teach permits on the con- | | BEM | 1-7-7-41 | 1747 | 177.20 | 77910 | THE PROPERTY OF STREET | 1 | 1 | | | | E.W. COME 'L' PROPE A' | 1000 | 1/000 | 16.00 | 1990 | 1 | | | | | | ME. CAN PROPE - VE | .1 | 1 | | Ī | 1 | | | | | | Hund linged - and | 1302 | 302 | 106 | 1308 | | | | | | | Prod Flow - gallhr | L | | | | l | | | | | | Fuel Press - Pit | | de la companya de la companya | F9 F*** | Torrect in the last to | | | | | | | | | | | | | | | | | | | Seggion on annotation appears | entité de l'éponses de la company comp | er water west product to the . The | ······································ | with the control of the control | | | the second second second second | | | Tori | 1 All | ONLAL | UM A | AVA | la del | LAL | ALK | SPAN | 2 | | Constigues of free | . | ON LAN | TAN | 1-11 | SITH | PII | Acres of the second | | manager over a | | Flight No. | 1 | 1.5 | 5 | | ج ا | 1.9 | 14 | | 12 | | Lina = Min | Action of the second | | | ا
الاشتاء (<u>الشان المناف</u> ة) | | 1 | | | - | | IAS-knots | Mary C. | 30300 | | | 75.7 | 1296 | 312 | | | | Altitudo - ft | 44540 | 12CA80 | MAN KO | MATRO | AAK! | 77700 | 146730 | 14.400 | STIX C | | Air Tamp C | 1-48 | 1+18 | | -27 | | - 76_ | | <u> </u> | | | RPM | 17/20 | 7770 | 7700 | JK00 | 7300 | لترويمها | 15/5 | ZXQQ | 6 Km 2 | | Ex. Gas Temp-°C | 1010 | 145 | 700 | ZEO | 1775 | 7700 | 1 723 | 7.515 | 1.22 | | Er Gas Pross - "Hg | | | ļ | a | | | James a car jaco | <u>.</u> | | | Funl Handrigal | 4 | | | | | | <u> </u> | - | rint incerementalistical | | Phol Play - gal/br | - | | | The Radio Market of the State of the | - | eriogrammane c | | - | Copilis de la Carriera managemente | | Eval Press = Pill | CONTRACTOR SECURIC | SELECTOR SHOW MAKE CONSERVE A | matternes o - Landerna | The state of s | | <u></u> | 1 | L | - Carlotte | | | | | | | | | | | | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | A I A S | JAN J | 2017 | | | 778 | | | | Test | LUCE | XIMI | AKL A | E KAL | | WH Z | AUI. | LEEL. | L | | Configuration | + | | | No. of the second second | | TICLE | PT | | | | Hight No. | | 17 | 12 | | | | | order anno 1 hans bezagend | | | Tima - Min | | T | | | I . | | | | and the same | | ACI leante | 2
200 | | | - | | 7 / 15 | | | , , , , , , , , , , , , , , , , , , , | | AR knots | 254 | 12d | 350 | THE CONTRACTOR OF THE PARTY | 7.7 | 350 | | | | | AS - knots
Altitude - ft | 4430 | 424
17880 | 29700 | Colonia harayan | 4700 | 7530 | | | 3446200000000 | | IAS knots
Aititude – It
Air Temp – C | 4430 | 424
17880 | 29700 | | 1726 | 1-3/ | agenteers yn glyngeriaanskellelen
Antonomiseaskeleningers dan
Antonomiseaskeleningers | | | | IAS knots
Altitude ft
Air Temp ⁶ C | 经验 | 1724
17280
1726 | 29700 | | 7740 | 7340 | | | | | IAS - knots
Aititude - ft
Air Temp - C
RPIS
Ex. Cus. Temp - C | 经验 | 424
17880 | 29700 | | 1726 | 7340 | | | | | LAS - knots
Altitude - ft
Air Temp - C
3P14
Ex. Gus Temp - C
Ex. Gus Press - PHs | 经验 | 1724
17280
1726 | 29700 | | 7740 | 7340 | | A A MAY | | | IAS knots
Altitude ft
Air Temp C
RPM
Ex. Gus Temp - C
Ex. Gas Press PHg
Fuel Used gal | 经验 | 1724
17280
1726 | 29700 | | 7740 | 7340 | | | | | IAS - knots Altitude - ft Air Temp - C BPM Ex. Gus. Temp - C Ex. Gas. Press - PHg Fuel Hand - gal Fuel Flow - gal /br | 经验 | 1724
17280
1726 | 29700 | | 7740 | 7340 | | | | | IAS - knots Altitude - ft Air Temp - C BPM Ex. Gus. Temp - C Ex. Gas. Press - PHg Fuel Hand - gal Fuel Flow - gal /br | 经验 | 1724
17280
1726 | 29700 | | 7740 | 7340 | | | | | IAS knots
Altitude ft
Air Temp C
RPM
Ex. Gus Temp - C
Ex. Gas Press PHg
Fuel Used gal | 经验 | 1724
17280
1726 | 29700 | | 7740 | 7340 | | | | | IAS - knots Aititude - ft Air Temp - C BPM Ex. Gus. Temp - C Ex. Gas. Press - PHg Fuel Hand - gal Fuel Flow - gal/br Fuel Press - PSI | 44.0
72.57
650 | 424
17880
17880
1786
1786
1786 | 29700
2530
590 | | 7740
650 | 7840 | | Dest | | | LAS - knots Aititude - ft Air Temp - C RP16 Ex. Gus Temp - C Ex. Gus Press - PHg Fuel Hand - gal Fuel Flow - gal/br Fuel Press - PSI Test | 44.0
72.57
650 | 1724
17280
1726 | 29700
2590 | VEL | 1740
650 | 75 to
640 | 4/85 | PEEC | | | IAS knots Aititude ft Air Temp C RPM Ex. Gus Temp C Ex. Gus Press PHg Fuel Hand gal Fuel Flow gal/br Fuel Press PSI Test Configuration | 44.0
72.57
650 | 424
17880
17880
1786
1786
1786 | 29700
2590
2590 | | 1740
650
FL/4 | 7840 | 4/85 | Peec | | | LAS knots Aitituda ft Air Temp C RPM Ex. Cha Temp C Ex. Cha Press RHg Fuel Hand gal Fuel Flow gal/br Fuel Press PSI Configuration Flight No. | 44.0
72.57
650 | 424
17880
17880
1786
1786
1786 | 29700
2590 | VEL | 1740
650 | 75 to
640 | 4/85 | PEEL | | | IAS - knots Aititude - ft Air Temp - ft BPM Ex. Gus. Temp - C Ex. Gas. Press - PHg Fuel Place - gel Fuel Press - PHI Fuel Press - PHI Configuration Flight No. Fires - Min | 444 | 7/4/2/2
7/2/2/2
7/4/2/2
9 | 29700
7530
590 | VE)
AN | 1740
650
174
184 | 75 to
640 | 4/85 | PEGI | | | AS - knots Aititude - ft Air Temp - C BPM Ex. Ges Temp - C Ex. Ges Press - PHg Fuel Place - gel Fuel Press - PSI Configuration Flight No. Time - Min AS - knots | 443 | 7.4
17880
17880
17880
17880
17890
17890
17890 | 29700
2590
590 | VE)
AN | 1740
650
174
184 | 75 to
640 | 4/85 | PECC | | | LAS - knots Altitude - ft Air Temp - ft Air Temp - ft Plas Ex. Gas Press - RHg Fuel Used - gal Fuel Flow - gal/br Fuel Press - PSI Configuration Flight No. Firms - Min LAS - knots Altitude - ft | 443 | 7.4
17880
17880
17880
17880
17890
17890
17890 | 29700
2590
590 | VE)
AN | 1740
650
174
184 | 75 to
640 | 4/85 | PECC | | | AS - knots Aititude - ft Air Temp - C BPM Ex. Oss Temp - C Ex. Oss Press - PHg Fuel Place - gal Fuel Place - gal Fuel Press - PSI Configuration Flight No. Time - Min AS - knots Altitude - ft Air Temp - C | 443 | 7.4
17880
17880
17880
17880
17890
17890
17890 | 29700
2590
590 | VE)
AN | 7740
650
74
74
74
75 | 75 to
640 | 4/85 | PECC | | | AS - knots Aititude - ft Air Temp - ft Air Temp - ft Ex. Gas Press - PHg Fuel Flow - gal/br Fuel Flow - gal/br Fuel Press - PSI Configuration Flight No. Time - Min AS - knots Altitude - ft Air Temp - C | 443
7250
450
450
7540 | 124
17880
17880
17830
17830
1780
1780 | 29700
2590
590 | VE)
AN | 7740
650
74
74
74
75 | 75 to
640 | 4/85 | PEGL | | | AS - knots Altitude - ft Air Temp - ft Air Temp - ft BPIs Ex. Gas Temp - ft Ex. Gas Press - PHg Enel Used - gal/br Fuel Flow - gal/br Fuel Press - PSI Configuration Flight No. Time - Min AS - knots Altitude ft Air Temp - ft Ex. Gas Temp - ft | 443 | 7.4
17880
17880
17880
17880
17890
17890
17890 | 29700
2590
590 | VE)
AN | 1740
650
174
184 | 75 to
640 | 4/85 | PEGO | | | AS - knots Altitude - ft Air Temp - C BPM Ex. Gas Temp - C Ex. Gas Press - PHg Fuel Plan - gal / br Fuel Press - PSI Configuration Flight No. Pines - Min AS - knots Altitude - ft AIr Temp - C Ex. Gas Press - BHg Ex. Cas Temp - C | 443
7250
450
450
7540 | 124
17880
17880
17830
17830
1780
1780 | 29700
2590
590 | VE)
AN | 7740
650
74
74
74
75 | 75 to
640 | 4/85 | PECO | | | AS - knots Aititude - ft Air Temp - C BPM Ex. Ges Temp - C Ex. Ges Press - PHg Fuel Place - gel Fuel Press - PSI Configuration Flight No. Circa - Min AS - knots Altitude - ft Air Temp - C EX. Ges Press - BHg Fuel Used - gel | 443
7250
450
450
7540 | 124
17880
17880
17830
17830
1780
1780 | 29700
2590
590 | VE)
AN | 7740
650
74
74
74
75 | 75 to
640 | 4/85 | | | | AS - knots Aititude - ft Air Temp - C BPM Ex. Gas Prass - PHg Fuel Place - gal Fuel Prass - PHI Fuel Prass - PHI Configuration Flight No. Time - Min AS - knots Altitude - ft Air Temp - C EPM Ex. Gas Prass - BHg Fuel Used - gal Fuel Flor - gal Fuel Flor - gal Fuel Flor - gal Fuel Flor - gal | 443
7250
450
450
7540 | 124
17880
17880
17830
17830
1780
1780 | 29700
2590
590 | VE)
AN | 7740
650
74
74
74
75 | 75 to
640 | 4/85 | PFCC | | | AS = knots Aititude = ft Air Temp = C SPM Ex. Ges Temp = C Ex. Ges Press = PHg Fuel Flow = gel/br Fuel Flow = gel/br Fuel Press = PSI Configuration Flight No. Circle Min AS = knote Altitude = ft Air Temp = C Ex. Ges Press = BHg Fuel Used = gel/br | 443
7250
450
450
7540 | 124
17880
17880
17830
17830
1780
1780 | 29700
2590
590 | VE)
AN | 7740
650
74
74
74
75 | 75 to
640 | 4/85 | Psec | | | AS - knots Aititude - ft Air Temp - C BPM Ex. Gas Prass - PHg Fuel Prass - PHg Fuel Prass - PHI Fuel Prass - PHI Configuration Flight No. Time - Min AS - knots Altitude - ft Air Temp - C EPM Ex. Gas Prass - BHg Fuel Used - gal | 443
7250
450
450
7540 | 7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0
7.4.0 | 29700
2590
590 | VE /
AN -
46070
74.10 | 7740
650
74
74
74
75 | 75 to
640 | 4/85 | PFC | | # AIR FORCE FLIGHT TEST CENTER TAIR RESEARCH & DEVELOPMENT COMMAND AF TECHNICAL REPORT NO. AFFTC 54-16 PHASE II PERFORMANCE AND SERVICEABILITY TESTS OF THE F-86F AIRPLANE USAF NO 51-13506 WITH PRE-TURBINE MODIFICATIONS DONALD H. WOOLEY, I/LT. USAF FLIGHT TEST ENGINEER STUART R. CHILDS, MAJOR, USAF TEST PILOT **JUNE 1954** EDWINDS AIR FARCE BASE CHURARIUM CONFIDENTIAL Additional Copies Of This Report May Be Obtained Irom The Armed Services Tech. Info. Agency Document Service Center U.B. Bldg., Dayton 2, Ohio "This document contains information affecting the National defense of the United States within the meaninig of the Espionage Laws, Title 18, U. S. C., Sections 793 and 794. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law." RETAIN OR DESTOY IN ACCORDANCE WITH AFR 205-1. DO NOT RETURN # CONFIDENTIAL AF Technical Report Me. AFF 10. 54 16. June 1984 PHASE II PERFORMANCE AND SERVICEABILITY TESTS OF THE F-86F AIRPLANE USAF No. 51-13506 WITH PRETURBINE MODIFICATIONS DONALD H. WOOLEY, 1/Lt, USAF Flight Test Engineer STUART R. CHILDS, Major, USAF Test Pilot UNITED STATES AIR FORCE AIR RESEARCH AND DEVELOPMENT COMMAND AIR FORCE FLIGHT TEST CENTER EDWARDS, CALIFORNIA CONFIDENTIAL 51376 # PUBLICATION REVIEW This Report has been reviewed and is approved H. A. HANES Colonel, USAF Director, Flight Test and Development J. S. HOLTONER Brigadier General, USAF Commander # ABSTRACT The increases in climb and level flight performance of the F-86F with Pre-Turbine injection modifications substantially improve the value of this aircraft as a fighter-interceptor; however, the problems of turbine blade failure and nozzle binding must be overcome before the unit can be used operationally. # ANTE OF CONTENTS FORE ARCHAGE UNAF No. 51-13506 | | | | Page Number | |----------------------|----------------------------------
--|-------------| | A a | ANTRODUCTION | | 1 | | B. | TEST RESULTS | | 2. | | C. | CONCLUSIONS | | 4 | | D_{\bullet} | RECOMMENDAT | ONS. | 4 | | 6)-19 | ENDLX 3 | | | | who articles in the | the proof of districts of the mo | | | | F. H. | | of the many states of the stat | 1 | | | | reformance (School for A) | 3 | | | 4 | arformanco (Schodu e B) | | | j | | ight Acceleration | 5 | | 4 | | n Leve Flight Assspeed | 6 | | 5
6 | | wast Crithration Calibration | 7
8 . | | VI.E | ENDIXU | | | | A. | Dunonsions | | · 1 | | В. | Operational Limit | ataon ≅ | 2 | | G_{\bullet} | Power Plant | | 3 | | \mathbf{D}_{ullet} | Weight and Bitane | ••: | 3 | | E. | Instrumentation | | 3 | | F. | Photographs | | 5 | | APP | ENDIX III | | | | A. | Flight Log | | 1 | | В. | Origir (1 Data | | 3 | | APP | ENDIX IV | | | | Pre | iminary Report | 3 May 54 | 1 | | Prež | iminary Report | 17 May 54 | 2 | | Pre | iminary Report | 30 June 54 | 4 | | | | | | DISTRIBUTION #### A. INTRODUCTION 司官衛衛 所養官 # 1. Project Objective Flight tests were conducted on the F-86F airplane, USAF No.51-13506, with pre-turbine injection modifications to determine the state of development and serviceability of the installation and to obtain limited performance data. # 2. Project Authority The Phase II performance and serviceability tests were conducted under the authority of the Commander, AFFTC as requested by Air Research and Development Command TWX No. RDTOTP 4-22-E. # 3. Project History - a. Seventeen flights were made between 21 April and 5 May, 1954 totaling twelve hours of which two hours and twenty-eight minutes were flown with PTI in operation. Four additional flights were made between 6 May and 26 May, 1954 by other pilots of the Air Force Flight Test Center for additional qualitative evaluation of the airplane. - b. The airplane was instrumented and maintained by the General Electric Company facility at the Air Force Flight Test Center and was returned to them under bailment agreement upon completion of the Air Force flight evaluation program. The flight test program was completed 26 May, 1954. - c. Preliminary reports of these tests were submitted to the Commander, Wright Air Development Center on 3 May and 17 May, 1954. A detailed maintenance report was submitted to the same Hdq, 30 June 1954. These are included as Appendix IV. # 4. Description of the Aircraft - a. The airplane flown is a standard F-86F with 6° x 3° wing leading edges. The only modification to the exterior configuration is the addition of several air vents on the aft fuselage section to provide better cooling. - b. The engine is a standard J47.GE-27 fitted with a Stellite tailpipe, variable nozzle and necessary controls and equipment to inject standard engine fuel through the turbine casing forward of the turbine wheel. The fuel is injected at four equally spaced points around the periphery of the turbine casing. The rate of flow of PTI fuel is controlled by compressor inlet pressure and a ground adjustment is provided to allow various PTI fuel schedules to be set up. The nozzle consists of four 90 degree flat plate segments which provide a near perfect circular opening throughout the nozzle area range. The nozzle is modulated by a Solar Microjet unit which senses the ratio between compressor discharge pressure and turbine discharge pressure. This unit operates by receiving an electrical signal of sufficient magnitude to send a pulse to the actuator motor to jog the nozzle to a slightly more open or more closed position until an electrical balance is obtained. - c. PTI is placed in operation by moving the throttle outboard while in the full throttle position. This action closes a switch and PTI will remain in operation until the "cage" button on the throttle is depressed or until the throttle is retarded sufficiently to cause an unbalance between PTI and main engine fuel flows. - d. The airplane was tested in the clean configuration only and all curves in Appendix I are of this configuration. - e. The manufacturer limits PTI operation of this installation to an altitude range of 20,000 to 45,000 feet because of engine structural limitations. #### B. TEST RESULTS ## 1. Climb Check climbs were flown using two climb schedules. One schedule noted as schedule "B" in the climb curves in Appendix I was taken from Air Force Technical Report No. AFFTC 54-10 on Phase IV testing of the standard F-86F. This schedule is the recommended best climb schedule for the F-86F. From this schedule and estimated 40% thrust augmentation from PTI a theoretical best climb schedule was calculated and designated as schedule "A" in Appendix I. Since this PTI installation is limited to an altitude range of 20,000 to 43,000 feet, schedule "A" is an attempt to stay on the Phase IV schedule up to slightly below 20,000 feet; and then while lighting PTI, accelerating to the theoretical or proposed schedule for the remainder of the climb to 45,000 fect. The limited time available for tests and the somewhat arbitrary nature of the operating limits placed upon the unit at the present state of development precluded the developing of data reduction methods for reducing this data to standard day conditions. The data presented are, therefore, test data corrected for instrument error. Airspeed and altimeter position error corrections used are those established for the standard airspeed system of the F-86F airplane during Phase IV testing. The applicability of these curves was established by checks against an F-86A pacer aircraft. A summary of climb performance is presented below: | | TIME TO CLIM | | | |------------------|-----------------|-----------------|-----------------| | Altitude | Without PTI | Wi | th PTI | | ft. | Sched. B - Min. | Sched. A - Min. | Sched. B - Min. | | 20,000 to 45,000 | 12.1 | 4.4 | 4.6 | ### RATE OF CLIMB | Altitude | Without PTI | With | PTI | |----------|-------------------|-------------------|-----------------| | ft | Sched. B - ft/min | Sched. A - it/min | Sched, B-ft/min | | 30,000 | 3,000 | 7,400 | 7,000 | | 45,000 | 1,000 | 3,300 | 4,200 | b. PTI operation during all climbs was satisfactory with slight combustion instability for a short period on a few of the climbs. This condition was detected by the pilot but apparently did not affect climb performance. Although the manufacturer limits the present PTI configuration to 45,000 feet a maximum altitude attempt was made to explore and substantiate this Fmit. A maximum altitude of 53,760 feet was established but loss of a turbine blade terminated the flight. At this altitude the aircraft is capable of a 600 ft/min rate of clamb. # 2. Level Flight - a. Level fight speed versus power data were obtained at 20,000, 30,000 and 45,000 feet. Considerable difficulty was encountered in obtaining this data due to nozzle binding. A nozzle with surface hardened segments was installed which alleviated this condition considerably but nozzle sticking was still present to a limited degree on subsequent flights. This nozzle sticking was apparent only in level flight at altitude and was not apparent during any of the climbs. - b. Level flight data are presented only as time histories of level flight accelerations and maximum level flight airspeed. RPM is not directly representative of engine performance with this installation. PTI fuel is injected upstream of the turbine wheel and burns aft of the turbine wheel. The burning of this additional fuel increases the pressure on the back side of the turbine blades and tends to decrease engine RPM. Additional fuel is scheduled to the main engine to prevent this decrease in RPM while on PTI operation. RPM is therefore dependent upon this balance of fue, scheduled between the main engine and PTI. Nozzle position also affects engine RPM and since it cannot readily be established that the nozzle was completely free from stacking during apparently satisfactory operation,
nozzle binding may have adverse affects on the data. Since RPM is affected by the two conditions stated it is not a reliable criteria of engine thrust. Maximum level feight airspeed data were obtained with and without PTI within the 20,000 to 45,000 feet range to which PTI operation is limited. These instrument corrected data are presented in Figure 4, Appendix 1 and are listed in the summary below: #### MAXIMUM CALIBRATED AIRSPEED | Altitude ft. | Without PT's
knots | With PTI knots | |--------------|-----------------------|----------------| | 20,000 | 423 | 439 | | 30,000 | 353 | 363 | | 45,000 | 254 | 255 | A comparison of acceleration runs at 20,000, 30,000 and 45,000 feet were made with and without PTI in operation. At 20,000 feet the time to accelerate from a CAS of 166 knots to 420 knots was reduced from 3,47 minutes without PTI to 1,5 minutes with PTI, at 30,000 feet an increase in CAS from 156 knots to 350 knots required 3,5 minutes dry and 1,72 minutes wet and at 45,000 feet from 210 knots to 254 knots the time required was 3,16 minutes compared to 1,0 minute. Time histories of these accelerations are presented as instrument corrected data in Figure 3 in Appendix I. The two accelerations made at each of the three altitudes were made as consecutive runs of the same flight. #### 3. Static Thrust Calibration A ground static thrust calibration of the test engine was made on the Universal Thrust Stand of the Air Force Flight Test Center. Results of the test are presented in Figure 5, Appendix 1. AF Technical Report No. AFFIC 51-16 # C. CONCLUSIONS 1. It is concluded that the increase in performance of the F-86F due to the PTI installation is of such magnitude as to warrant further exploration of the system. The installation has sufficient merit to make it advisable for the Air Force to secure development test history on the system in order that definite operating limits and maintenance requirements may be established. # D. RECOMMENDATIONS 1. The AFFTC recommends that further developmental testing on the PTI installation be accomplished both by the contractor and by the Air Force. To insure representative operation more than one aircraft should be used for this testing. 4 # AF Technical Report No. AFFTC 54-16 # APPENDIX I TABLE OF CONTENTS | Figure No. | CURVES | Page Number | |------------|--------------------------------|-------------| | 1 | Climb Performance (Schedule A) | 1 - 2 | | 2 , | Climb Performance (Schedule B) | 3 - 4 | | 3 | Level Flight Acceleration | 5 | | 4 | Maximum Level Flight Airspeed | 6 | | 5 | Static Thrust Calibration | 7 | | 6 . | Airspeed Calibration | 8 | | | 50000 | | | | | | 1/GU | PE | | | | O - | SYM
FLIG | POL. | S Po P | | | | |---------|-----------------|---|--|-------------|----------------------|---------------|-------------|-----|-----|------------|-----|------------|-------------|----------------|----------------------------|--------------|----|-------| | | 45 000 | | P | 7/0 | | MACA
FA.T. | | | _ & | | 1.0 | Δ | FLIG | HTM | Yo. 8
No. 12
TI 4.14 | : !
, · ! | | | | | 30000 | | | | | | | | | | 0 | A TI | | | | | | | | -30:-11 | 25000
201000 | (I) | | D 0 | ایا | | OLD
COLD | | | - | 130 | | D | Λ _Φ | | \$81LT | 9 | · · · | | 1 | 15000 | 6 | (A) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B | Λ | | | | | : | | | 6 1 € | b | | | | |
 | | | 5000 | Adod
FOFCA | | 8000
FT/ | MIN
MO-AC
REEA | | FUE | 200 | 20 | 400
SUN | 00 | 50x | 00 | 800 | 00
BS// | 1000
HR | ספ | | | | AVGUREV | | |------|--|-------------------------| | | FIBER USAF NO SU | 1NOZ
13506
ESTART | | | CZIME SCHEDUL
TEST CONDITIO | E A 50000 | | | | | | | | | | | | 10 000 | | | | | | | | 1500¢ | | | | 30000 | | | a di ea servici | | | | | 25000 3 | | | | A C LORGE X | | | th A | | | | | (L) | | 1 | | Topac . | | | | | | | 4 | A Q 3000 | | | | | | 7600 | 7700 7800 7800 600 700 800 800 1000 200
8 744 EXHAUST GAS TEMP CALL | BRATED AIRSPEED | | | CALLS WEATERS | ~1003 | SYMBOLS WITHOUT FLAGSA d) nj 4 HIIM STOBNIAS in) 9 1.8 2.0 2.2 2.4 2.6 2.8 10 1.2 14 380 CALIBRATED AIRSPEED 360 340 FLAGS-PT. SYMBOKS WITHOUT NYABOLS WILL 280 240 5000 3000 X FIGURE NO 6 AIRSPEED POSITION ERROR CORRECTION CHECK AGAINST PHASE IL CALIBRATIOI WITH F-86A USAF NO 52-4349 STANDARD SYSTEM F-86F USAF NO 51-13506 000001 29000 DE LO DE VO # APPENDIX II TABLE OF CONTENTS # General Information and Photographs, F-86F USAF No.51-13506 | | Page Number | |--|--| | DIMENSIONS | 1 | | OPERATIONAL LIMITATIONS | 2 | | POWER PLANT | 3 | | WEIGHT AND BALANCE | 3 | | INSTRUMENTATION | 3 | | PHOTOGRAPHS | | | Front View Three-Quarter Left Front View Left Side View Three-Quarter Left Rear View Rear View | 5
6
7
8
9 | | | OPERATIONAL LIMITATIONS POWER PLANT WEIGHT AND BALANCE INSTRUMENTATION PHOTOGRAPHS 1. Front View 2. Three-Quarter Left Front View 3. Left Side View | #### A. DIMENSIONS The following design data and general dimensions, except those affected by PTI modifications, were taken from the airplane model specification, North American Report No. NA-51-1091, dated 13 Feb 52; ### 1. General Dimensions: | Span | 37,12 ft | |------------------|----------| | Length (overall) | 37.54 ft | | Height (overall) | 14.74 ft | # 2. Wings | Area (including ailerons) Span Aspect Ratio | 302,26 sq ft
37,12 ft
4,56 | | | | | |---|----------------------------------|--|--|--|--| | Taper Ratio Dihedral | .510
3° | | | | | | Sweepback (25 percent line of the b | ,0 | | | | | | airfoil) | 35° 41" | | | | | | Mean Aerodynamic Chord(length) | 102.0 in | | | | | | Root Chord (in the streamline) | 130,16 in | | | | | | Tip Chord (in the streamline) | 66.34 in | | | | | | Airfoil section designation root - NACA 0012-64(modified) tip - NACA-0011-64(modified) ("eading edge is symmetrically extended 6 inches at the root and 3 inches at the tip) | | | | | | | (a.) | Flaps | | |------|------------------------------|-------------| | | Area (total.) | 32.51 sq ft | | | Chord (mean - in the stream- | | | | line) | 29.62 in | Deflection 38° (b) Ailerons Area (each alleron) 16,36 sq ft Defsection up 15° dn 15° 3. Fuselage: | Width (maximum) | 60,0 m | |---------------------------|----------| | Height (to top of canopy) | 78,25 in | 4. Speed Brakes: | Area (total surface : | arca) | 10.98 sq ft | | |-----------------------|-------|-------------|--| | Deflection | • | 50° | | # AF Technical Report No. AFFTC 54-16 # 5. Vertical Tail: | (a) | Fin. | | | |-----|-----------------------------|------------|-------------| | | Area(including balance area | forward of | | | | the hinge line) | | 25.32 sq ft | | | Normal setting | | 0° | | | Deflection | right | 0° | | | | left | 0° | | | | | | # (b) Rudder: Area(including tab and excluding rudder balance forward of the hinge line) Deflection right 27.5° left 27.5° | (c) | Tabs | • | | |-----|------------|-------|-----------| | • | Arca | | .87 sq ft | | | Deflection | right | 15° - | | | | left. | 15° | # 6. Horizontal Tails | (a) | Stabilizers | | | |-----|----------------------------|----------------------------------|-----------------| | ` , | Area(movable portion only) | | 19,10 sq ft | | | Span | | 12.75 ft | | | Root Chord | | 45.50 in | | | Deflection | up | 6° | | | | $\overline{\operatorname{down}}$ | 10° | | | Dihedral | | 10° | | (b) | Elevator; | | | |-----|--------------------------------------|----|------------| | ` , | Area (aft of hinge line) | | 8,62 sq ft | | | Deflection (about the hinge line and | | | | | directly related to the horizontal | up | 20.9° | | | stabilizer angle) | dn | 3.3° | # B. OPERATIONAL LIMITATIONS # 1. Limit Speeds | Divr (at 12,000 feet) | 556 knots | |---|-----------| | Dive (at 12,000 feet) Dive (at 29,000 feet) | 421 knots | | Flaps down | 185 knots | | Gear extended | 185 knots | # AF Technica Report No. AFFTC 54-16 2. Limit Maneyver Load Factors Cican configuration 15 (due to PTI ballast) to -3. 3. Power Lamit tions T. P. T. M. Without PTI Wit | | RPM | Without PTI | With PTI | |--------------------------------|------|-------------|--------------| | Malatary (30 mm _o) | 7950 | 690°C | 1100°C | | Normal rated (continuous | 7630 | 635°C | =- == | 4. Recommended Wing Fiap Setting | Take-Off (full extens | ion) 38° | | |-------------------------|----------|--| | Landing (full extension | on) 38° | | 5. Maximum in Flight Co Positions | Forwa.rd | 20.4% MAC
25.3% MAC | |----------|------------------------| | Aft | 25,3% MAC | # C. POWER PLANT 1. Engine Model General Electric, Mfg. J-47-GE-27 with PTI modification Engine number 085674 #### D. WEIGHT AND BALANCE | Configuration | Clean | |--|------------| | Basic Weight with PTI modifications | 12,288 lbs | | PTI kit | 197 lbs | | Ballast (required with the PTI installation) | 140 lbs | | Pilot | 200 lbs | | Oil | 23 lbs | | Fuel (gal) | 435 gals | | Fuel at 6.5 lb/gal | 2,828 lbs | | Gross weight at engine start | 15,339 lbs | | Gross weight at engine start
CG - % MAC | 25.0 | # E. INSTRUMENTATION a. The instrumentation was installed and maintained by the General Electric Company at the company's
facility at Edwards Air Force Base, Calif. The following instruments were installed in the airplane prior to the Air Force evaluation flights: # AF Technical Report No. AFFIC 54-16 - 1. Coordination counter - 2 Clock - 3. Airpired indicator - 4. Altimeter - 5. Exhaust gas temperature - 6. Tactometer - 7. Outside Air temperature - 8. Main fue, flow - 9. PTI fuel flow All the above listed instruments which were installed in the Photo Recorder Compartment were duplicated in the cockpit with the exception of the Outside Air Temperature Indicator. For the Air Force evaluation flights the two standard altimeters were replaced by two C-19 altimeters and two Fuel Flow Totalizers were added to the instrumentation. All instruments were calibrated by General Electric except those installed for the Air Force tests which were calibrated by the Instrumentation Branch, Flight Test Engineering Laboratory, Edwards Air Force Base, California. - b. Thrust Stand fuel flows were measured by manually timing an increment on the fuel totalizer. Timing was started as the one gallon counter moved to the next number and timing was stopped approximately one minute later as the counter moved again. - c. The standard ship's airspeed system was used for all tests and was connected to indicators in the pilot's panel and photo panel. The location and dimensions of the wing boom are the same as on a standard F-86F. - d. The free air temperature was obtained from a shielded temperature bulb mounted beneath the fuselage to the right side of the centerline just aft of the nose gear. This bulb was connected to a photo-panel indicator only. The temperature recovery factor used was 1,00. APPENDIX II APPENDIX II APPENDIX II 8 VEDENDIX II APPENDIX II # AF Technical Report No. AFFTC 54-16 # APPENDIX III | | | Page Number | |----|---------------|-------------| | A, | FLIGHT LOG | 1 | | B. | ORIGINAL DATA | 3 | A. FLIGHT LOG The following listing reflects a brief history of the flight tests: | Flight No. | Date | Flight Time
hours - min.
PTI Total | TESTS | |------------|-----------|--|---| | 1 | 21 Apr 54 | 0::06 0::31 | Pilot familiarization, PTI climb
20,000 to 45,000 feet. Attempted PTI
lights at 35,000 and 45,000 feet. | | 2 | 22 Apr 54 | 0::04 0::28 | PT1 climb 20,000 to 45,000 feet, at-
tempted PTI lights at 35,000 and
45,000 feet. | | 3 | 23 Apr 54 | 0:45 0:48 | PTI climb 20,000 to 45,000 feet, attempted PTI lights at 45,000 feet. | | 4 | 24 Apr 54 | 0:06.3 0:35 | PTI climb 20,000 to 45,000 feet, at-
tempted dry speed power at 35,000 feet. | | 5 | 29 Apr 54 | 0:03.5 0:40 | Dry climb to 45,000 feet, attempted PTI lights at 20,000, 30,000, 35,000 and 45,000 feet. | | 6 | 30 Apr 54 | 0:05 0:50 | Dry climb to 45,000 feet. Successful PTI lights at 20,000 and 35,000 feet. | | 7 | 30 Apr 54 | 0:07.3 0:55 | Dry climb to 20,000 feet, airspeed calibration with pacer airplane at 20,000 feet. | | 8 | 30 Apr 54 | 0:12:1 0:55 | PTI climb 20,000 to 45,000 feet, turns and dive with PTI | | 9 | 30 Apr 54 | 0;08 0;50 | Dry climb to 45,000 feet. Successful PTI lights at 40,000 feet. | | 10 | 1 May 54 | 0:09 0:40 | Dry climb to 45,000 ft, PTI climb 45,000 to 53,420 ft. Turbine bucket failed at 53,420 ft, Max. alt. reached was 53,760 feet. | | 11 | 4 May 54 | 0206.7 1205 | PTi climb 20,000 to 45,000 feet, at-
tempted PTI lights at 40,000 feet. | | 12 | 4 May 54 | 0:15.5 0:40 | PTV climb 20,000 to 45,000 feet. Suc-
cessful PTF lights at 40,000 and 45,000
feet. | | Flight No. | Date | Flight hours - | | теятя | i t | |------------|-----------|----------------|---------------|--|-----| | 13 | 4 May 54 | 0 | 0:50 | Dry climb to 45,000 feet. Turns at 40,000 feet. | | | 14 | 4 May 54 | 0:12.5 | 0855 | PTI climb 20,000 to 45,000 feet. Turns at 45,000 feet with and without PTI. Accelerations with and without PTI at 45,000 feet. | | | 15 | 5 May 54 | 0 | 0: 4 5 | Tower fly-bys. Instrumentation malfunction, no photo-recorder data. | | | 16 | 5 May 54 | 0:01.8 | 0:45 | Dry climb to 40,000 feet, airspeed calibration with Pacer aircraft at 20,000 and 40,000 feet. | , | | 17 | 5 May 54 | 0::05 | 0850 | Dry climb to 30,000 feet. Accelerations with and without PTI at 20,000 and 30,000 feet. | | | 18 | 6 May 54 | 0;13 | 0;33 | Familiarization and quantative evaluation flight. Lost turbine bucket at altitude. Dead stick landings on lake bed. | | | 19 | 21 May 54 | 0:05 | 1:00 | Familiarization and qualitative evaluation flight. | | | 20 | 25 May 54 | 0::17 | 0:40 | Familiarization and qualitative evaluation flight. | | | 21 | 26 May 54 | 0:07 | 0:25 | Familiarization and qualitative evaluation flight. Lost turbine bucket at altitude. | | | | TOTALS: | 3:10,2 | 14:340 | | | | TEST I | ATA (| CORRE | CTED | FOR II | NSTR UI | MENT | ERROR | • | | |--|---|---|--|--|--|--|--|--|---| | | | | | No. 51 | | | | - | | | B - A | 1 - LIF | CHIC | 1100 | - | SCHA | DULE | Δ | | | | Cost | | LEAN | 57777 | | 0 0// - | | | | | | Configuration | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 7 7 7 | : 3 | . 3 | -3 | ₹ | 3 | इ | 2 | | light No. | | 11.1.9 | | ند حقد | 12 A2 | 13.63 | 10 20 | 14.73 | 154 | | Cime - Min | 929 | 3995 | 381.5 | 369.5 | 3.57 | 3735 | | 367.3 | 37/ | | AS - ksots | 6280 | 8360 | | 12/60 | | 16250 | | | 2206 | | Nititudo – ft | 44 | 4/ | 3.5 | 30 | 14 370
14 | 20 | 77230 | 13320 | 4406 | | Mr Tamp - G | 78/0 | | 7820 | | 7820 | | 7800 | 7810 | -55 | | PM | 660 | 660 | 660 | | 460 | | 450 | 650 | | | C. Lias Temp - C. | | 660 | - 50 | 960 | 600 | 460 | 920 | 630 | <i>U3</i> (| | E. Cas Press - THE | 115 | 119 | 129 | 129 | 1.35 | 145 | 152 | 157 | 125 | | nal Card - gal | | | 127 | 122 | 7.35 | | 134 | 707 | 760 | | nel Flow - gal/h- | | | | | | | | | | | nel Press - PSI | | L | | <u></u> | | L | L | | | | ω | | | | | | | | | | | | C 12 | سر مرح | - | 10 - | | J | | | | | 'est | | مسوے ہے | -6/1/ | 10 | - 267 | APV | | | | | ionfiguration | | LBAN | 5 | 5 | 5 | | 3 | | | | Might No. | 16 30 | 5 70 | 3-2 | 15 22 | 3 | 3 | 13.5 | -2- | 3 | | ime - Min | 13.32 | 15.58 | | | 18.26 | | 17.08 | 17.34 | 11.6 | | AS - ksote | 355 | 334 | 3/8 | 3015 | | | 2755 | 238 | 296 | | ltitude - ft | 24150 | 56 23 4 | 28200 | 30180 | 32/20 | | 3 230 | 38760 | | | ir Temp - C | | | | -2 | -/2 | -20 | -74 | -29 | -32 | | PM | 77/0 | | | 7710 | 77/0 | | 7700 | | 769 | | Ges Temp - C | 950 | 960 | 970 | 960 | 950 | 930 | 925 | 9,50 | 22 | | | 1 | | <u> </u> | | | | | | | | M. Gas Press - Tie | | | | | | | | | | | | 169 | 173 | 176 | 179 | 183 | 1/88 | 192 | 196 | ~0 | | nol Head - eni | 169 | 173 | 176 | 179 | 183 | 788 | 132 | 196 | 200 | | mel Used - gal | 169 | 173 | 176 | 179 | 183 | 788 | 132 | 196 | 200 | | nol Head - eni | 169 | 173 | 176 | 179 | 183 | /88 | 132 | 196 | 201 | | mel Used - gal | 169 | | | | | | 1 | 796 | 201 | |
mel Used - gal | 169
CHE | CB C | 21M | | | | 1 | 796 | 201 | | nel Blad - gal /hr
nel Flew - gal /hr
nel Press - Bill | 169
CHE | | 21M | B ~ | | | 1 | 796 | 201 | | rel Used - gal/hr
rel Flew - gal/hr
rel Press - Bill
resignation | 169
CHE | CB C | ,21M | B ~ | SGN | TOUL! | A 8 | 8 | 8 | | rel Used - gal/hr rel Flew - gal/hr rel Press - Bill estimates light No. | 069
CHE
6 | CR C | ,21M | B ~ | SGN | TOUL! | A 8 | | 8 | | rel Used - gal/hr rel Flew - gal/hr rel Press - Bill ast configuration light No. | 169
CHE
3
17.93 | CH (
LEAN
3
18.17 | 3
/8.4
231 | B 13.69 12.19 | SCN | 5
2,27
4,0 | 8
2.42
399.5 | 8
2.72
3 48 | 8
3.01
3.81 | | rel Used - gal/hr
rel Flew - gal/hr
rel Press - Bill
resignation | 169
CHE
3
17.93 | CH (
LEAN
3 | 3
/8.4
231 | B 13.69 12.19 | SCN | 5
2,27
4,0 | 8
2.42
399.5 | 8
2.72
3 48 | 8
3.00 | | rel Used - gal/ar rel Flew - gal/ar rel Press - Bil | 169
CHE
3
17.93
299 | CH (
LEAN
3
18.17
231
42320 | 3
8.4
231 | B ~
18.69
219 | SCN | 5
2,27
4,0 | 8
2.42
399.5
754.0 | 8 2.72 | 3.01
3.81
1178 | | rel Used = gsl rel Flow = gsl/hr rel Flow = gsl/hr rel Flow = gsl/hr rel Flow = Rill last Me light | 169
CHE
6
3
17.93
299
4/340
- 34 | CB (
LEAN
3
18.17
231
41320
-34 | 3
8.4
231
43200 | B 18.69 219 94260 -32 | SCN | 3
2,27
410
4150
35 | 8
2.42
399.5
754.0
32 | 8
2.72
368
9700
26 | 8
3.01
3.81
1178 | | rel Hed - gal/hr rel Flew - gal/hr rel Flew - gal/hr rel Fress - Edi anti- configuration light Mo ligh | 169
CHE
6
3
17.93
299
4/340
- 39
7690 | CB (
LEAN
3
18.17
231
41320
-34
7690 | 3
/8.4
23
432/0
-34 | B 3 18.69 219 94260 -32 | SCN | 5001
3
2,27
4/0
6/50
36
7190 | 8
2.42
399.5
759.0
32
7100 | 8
2.72
368
9700
26 | 8
3.01
3.81
1178
2: | | Tel Hard - gal/hr Tel Flew - gal/hr Tel Flew - gal/hr Tel Fress - Bill Tel Fress - Bill Tel Fress - C | 169
6
3
17.93
299
41340
- 39
7690
970 | CB (
LEAN
3
18.17
231
41320
-34
7690 | 3
/8.4
23
432/0
-34 | B 18.69 219 94260 -32 | SCN | 3
2,27
410
4150
35 | 8
2.42
399.5
759.0
32
7100 | 8
2.72
368
9700
26 | 8
3.01
3.81
1178
2: | | Tel Hand - gal/hr Tel Flew - gal/hr Tel Flew - gal/hr Tel Fress - Bill Tel Fress - Bill Tel Fress - C Fr | 169
6
3
17.93
299
41390
- 39
7690
970 | CH C
LEAN
3
18.17
231
41320
-34
7690
975 | 3
/8,4
231
432(0
-34
7690 | 3
13.69
219
14260
-32
7700
770 | SCN | 5004
2 27
410
4/50
35
7190
475 | 8
2.42
399.5
154.0
32
7 8 0 0 | 8
2.72
388
9700
26
7 840
475 | 8
3.01
3.81
1178
1178
2.13
6.2 | | Tell Hand - gal/hr Tell Flow - gal/hr Tell Frees - Bill Tell Hand Tight Ma | 169
6
3
17.93
299
41340
- 39
7690
970 | CH C
LEAN
3
18.17
231
41320
-34
7690
975 | 3
/8.4
23
432/0
-34 | 3
13.69
219
14260
-32
7700
770 | SCN | 5001
3
2,27
4/0
6/50
36
7190 | 8
2.42
399.5
154.0
32
7 8 0 0 | 8
2.72
368
9700
26 | 8
3.01
3.81
1178
1178
2.13
6.2 | | Hel Hand - gal/hr Hel Flew - gal/hr Hel Flew - gal/hr Hel Fress - Bill Hel Flew - His Hight Me High Me Hight High Me Hight | 169
6
3
17.93
299
41390
- 39
7690
970 | CH C
LEAN
3
18.17
231
41320
-34
7690
975 | 3
/8,4
231
432(0
-34
7690 | 3
13.69
219
14260
-32
7700
770 | SCN | 5004
2 27
410
4/50
35
7190
475 | 8
2.42
399.5
154.0
32
7 8 0 0 | 8
2.72
388
9700
26
7 840
475 | 8
3.01
3.81
1178
1178
2.13
6.2 | | Tell Hand - gal/hr Tell Flow - gal/hr Tell Frees - Bill Tell Hand Tight Ma | 169
6
3
17.93
299
41390
- 39
7690
970 | CH C
LEAN
3
18.17
231
41320
-34
7690
975 | 3
/8,4
231
432(0
-34
7690 | 3
13.69
219
14260
-32
7700
770 | SCN | 5004
2 27
410
4/50
35
7190
475 | 8
2.42
399.5
154.0
32
7 8 0 0 | 8
2.72
388
9700
26
7 840
475 | 8
3.01
3.81
1178
1178
2.13
6.2 | | Hel Hand - gal/hr Hel Flew - gal/hr Hel Flew - gal/hr Hel Fress - Bill Hel Flew - His Hight Me High Me Hight High Me Hight | 169
6
3
17.93
299
41390
- 39
7690
970 | CH C
LEAN
3
18.17
231
41320
-34
7690
975 | 3
/8,4
231
432(0
-34
7690 | 3
13.69
219
14260
-32
7700
770 | SCN | 5004
2 27
410
4/50
35
7190
475 | 8
2.42
399.5
154.0
32
7 8 0 0 | 8
2.72
388
9700
26
7 840
475 | 8
3.01
3.81
1178
2.13
6.2 | | Tell Hand - gal/hr Tell Flow - gal/hr Tell France Bill Tell Manual State Tell Manual State Tell France Bill Tell France Bill Tell France Bill Tell Flow - gal/hr Tell France Bill Tell France Bill Tell Flow - gal/hr Tell France Bill Tell Flow - gal/hr Tell France Bill | 169
6
3
17.93
294
41340
-34
7690
202 | CH (
LEAN
3
18.17
231
41320
-34
7690
975 | 3
8.4
231
4320
-34
7690
7000 | B 3,18,69 2,19 14,260 -3,2 7,700 2,70 | SCN | 8
2, 27
4,0
4,50
35
7,190
1,75 | 8
2.42
399.5
7540
32
7800
665 | 8
2.72
388
9700
26
7 840
475 | 8
3.01
3.81
1178
2.13
6.2 | | rel Hard - gal/hr rel Flew - gal/hr rel Flew - gal/hr rel Fress - Bill ast configuration light Mo lime - Mix All knots lititude - ft ir Ferry - C Dis c. Gas Temp - C | 169
CHE
3
17,93
299
7490
202 | CB C | 3
8.4
231
432(0
-34
7690
7000 | B 3,18,69 2,19 14,260 -3,2 7,700 2,70 | SCN | 8
2, 27
4,0
4,50
35
7,190
1,75 | 8
2.42
399.5
7540
32
7800
665 | 8
2.72
388
9700
26
7 840
475 | 8
3.01
3.81
1178
1178
2.13
6.2 | | rel Hard - gal/hr rel Flow - gal/hr rel Flow - gal/hr rel Fress - Bill ast configuration light Mo. lime - Mix All knots lithtide - ft ir Famp - C Did a. Gas Tamp - C pid Flow - gal/hr rel Flow - gal/hr rel Flow - gal/hr rel Fress - Bill ast configuration | 169
CHE
3
17,93
299
7490
202 | CB C
CB C
CB C | 3
/8.4
231
432/0
-34
7690
/000 | B 3,18,69 2,19 14,260 -3,2 7,700 2,70 | SCHE | 3
2,27
4/0
6/50
35
7790
175
054 | 8
2.42
399.5
7540
32
7800
665 | 8
2.72
368
9700
26
7.840
675 | 8
3.00
3.80
1175
7 14
6.20 | | rel Hard - gal/hr rel Flew - gal/hr rel Flew - gal/hr rel Fress - Bill lent Me light | CHE 3 17.93 299 41390 - 39 7690 202 | CB C
- BAN
- 31
- 34
- 34
- 7690
975
- 209
- CB C
- BAN | 3
8.4
231
432(0
-34
7690
7000 | B ~
3
18.69
219
14260
-32
7700
209 | SCHE | 8
2,27
4/0
4/50
35
7790
175
054 | 8
2.42
399.5
7540
32
7100
665
957 | 8
2.72
368
9700
26
7 840
675 | 8
3.00
3.81
1178
2.13
0.6
0.6 | | Hel Flew - gal/hr Hel Flew - gal/hr Hel Flew - gal/hr Hel Flew - gal/hr Hel Me Hend - Mir Hittide - ft He Temp - C Did He Gas Temp - C Hel Flew - gal/hr | CHE 3 17.93 299 41.340 - 39 7690 202 | CB C
18.17
231
42320
-34
7690
975
209
CB C
84N
8 | 231
43200
-34
7690
206 | B ~
3
18.69
219
14260
-32
7700
209
209
4.42 | SCHE | 2, 27
4,0
4,50
35
7,790
175
054 | 8
2.42
399.5
759.0
32
7800
665
057 | 8
2.72
368
9700
24
7.840
4.75
06/ | 8
3.01
3.81
1171
2:
7 14
6.2
0 6 | | Hel Flew - gal/hr Hel Flew - gal/hr Hel Flew - gal/hr Hel Fress - Bill Hell Ma Hight | CHE 3 17.93 299 4/390 - 39 769 202 CHE 6 8 3.38 376.5 | CB C
231
42320
-34
7690
975
209
CB C
54N
6
3575 | 2.1M
3.8.4
2.3.1
4.3.2.0
7.6.90
7.6.90
2.06
2.06
4.07
3.5.3 | B 3 18.69 219 14260 -32 7700 209 209 | SCH 8
9,93
358,5 | 2,27
410
4150
35
7190
175
054 | 8
2.42
399.3
759.0
32
7800
665
057 | 8
2.72
368
9700
24
7.40
4.75
06/ | 8
3.01
3.81
1178
2:
7 14
0 6 | | Hel Flow - gal/hr Hel Flow - gal/hr Hel Flow - gal/hr Hel Fress - Bill Hight Ma High | CHE 3 17.93 294 41340 -34 7690 202 CHE 8 3.38 376.5 13900 | CB C
28.17
23.1
42320
-34
7690
975
209
CB C
84N
8
3.68
3.7.5
16000 | 2.1M
3.8.4
2.3.1
4.3.2.0
7.6.90
7.6.90
2.06
2.06
4.07
3.5.3 | B 3 18.69 219 14260 -32 7700 209 209 | SCHE
8
4,93
358,5
22040 | 2004
2, 27
410
6150
35
7790
175
054 | 8
2.42
399.5
7840
32
7800
665
057 | 8
2.72
388
9700
26
7 140
475
067
5,59
329
27460 | 8
3.00
3.81
1173
7 14
6.2
0 6
5.9
3,3,296 | | Tell Hand - gal /hr Tell Flow - ft Tell Flow - ft Tell Flow - gal /hr | CHE 3 17.93 299 4/340 - 34 7690 202 CHE 8 3.38 376.5 13900 | CB C
18.17
231
42320
-34
7690
975
209
CB C
8
3.68
3.75
16000
22 | 21M
3
8.4
231
4320
-34
7690
206
21ME | B 3 18.69 219 94240 -32 7700 270 209 4.42 339.5 17080 | SCHE
8
4,93
358,5
22040 | 2004
2, 27
410
6150
35
7790
175
054 | 8
2.42
399.5
759.0
32
7800
665
057 |
8
2.72
368
9700
26
7.40
4.75
0.67
5.59
329
2740 | 8
3.01
3.31
1773
0.6
0.6
5.9
3/3,
2966 | | Tell Hand - gal/hr Tell Flow - gal/hr Tell Flow - gal/hr Tell Flow - gal/hr Tell Ma | CHE 3 17.93 294 41340 -34 7490 202 202 203 376.5 13900 22 7120 | CB C
18.17
231
42320
-34
7690
975
209
CB C
EAN
8
3.68
3.75
16000
22
7810 | 21M
3
8.4
231
4320
1320
1000
206
216
21730 | B 3 /8.67 2/9 4-260 -32 7700 270 2-09 4.42 3.39.5 /7080 /7 | SCHE
3595
22090
75 | 8
2, 27
4,0
4,50
35
7,190
175
0,54
0,54
2,55
24,500
7,760 | 8
2.42
399.5
7890
32
7800
665
057 | 8
2.72
388
9700
26
7 840
475
061
5.59
324
2740
7 | 8
3.01
1173
7 17
6.2
0 6
3.9
3.3
2960
773 | | The Proper Bill Pr | CHE 3 17.93 299 41340 - 39 7490 202 202 202 203 200 200 200 200 200 20 | CB C
18.17
231
42320
-34
7690
975
209
CB C
8
3.68
3.75
16000
22 | 21M
3
8.4
231
4320
-34
7690
206
21ME | B 3 18.69 219 94240 -32 7700 270 209 4.42 339.5 17080 | SCHE
8
4,93
358,5
22040 | 2004
2, 27
410
6150
35
7790
175
054 | 8
2.42
399.5
7540
32
7800
665
057
057
348
25480
11
7760 | 8
2.72
388
9700
26
7 840
475
061
5.59
324
2740
7 | 8
3.01
1173
7 17
6.2
0 6
3.9
3.3
2960
773 | | The Proper Bill Pr | CHE 3 17.93 294 41340 -34 7490 970 202 CHE 8 3.38 376.5 13900 520 7520 | CH (
LEAN
3
18.17
231
42320
-34
7690
975
209
209
3.68
3.7.3
16000
22
7310
675 | 3
8.4
231
4320
-34
7690
/000
206
21
353
/1140
21
7730
675 | B 3 /8.67 2/9 94260 -32 7700 270 200 200 170 170 675 | SCHE
5-19-3
3-58-5
22-9-0
7-7-6-0
9-6-5 | 8
2, 27
9,0
4,50
35
7,290
175
0,54
8
5,29
3,55
24,500
1,75 | 8
2.42
399.5
7540
32
7800
665
057
057
348
25480
11
7760
975 | 8
2.72
368
9700
26
7 840
475
06/
5,59
324
27460
7750
970 | 8
3.01
3.81
1173
7 14
6.2
0 1
3/3,
2960
7 7,
7 7,
7 7, | | The Press - Pill | CHE 3 17.93 299 41340 - 39 7490 202 202 202 203 200 200 200 200 200 20 | CB C
18.17
231
42320
-34
7690
975
209
CB C
EAN
8
3.68
3.75
16000
22
7810 | 21M
3
8.4
231
4320
1320
1000
206
216
21730 | B 3 /8.67 2/9 4-260 -32 7700 270 2-09 4.42 3.39.5 /7080 /7 | SCHE
5-19-3
3-58-5
22-9-0
7-7-6-0
9-6-5 | 8
2, 27
4,0
4,50
35
7,190
175
0,54
0,54
2,55
24,500
7,760 | 8
2.42
399.5
7540
32
7800
665
057
057
348
25480
11
7760
975 | 8
2.72
388
9700
26
7 840
475
061
5.59
324
2740
7 | 8
3.01
3.81
1173
7 14
6.2
0 1
3/3,
2966
7 73
7 73 | | The Proper Bill Pr | CHE 3 17.93 294 41340 -34 7490 970 202 CHE 8 3.38 376.5 13900 520 7520 | CH (
LEAN
3
18.17
231
42320
-34
7690
975
209
209
3.68
3.7.3
16000
22
7310
675 | 3
8.4
231
4320
-34
7690
/000
206
21
353
/1140
21
7730
675 | B 3 /8.67 2/9 94260 -32 7700 270 200 200 170 170 675 | SCHE
5-19-3
3-58-5
22-9-0
7-7-6-0
9-6-5 | 8
2, 27
9,0
4,50
35
7,290
175
0,54
8
5,29
3,55
24,500
1,75 | 8
2.42
399.5
7540
32
7800
665
057
057
348
25480
11
7760
975 | 8
2.72
368
9700
26
7 840
475
06/
5,59
324
27460
7750
970 | 8 3.01
3.81
1173
7 14
6.2:
0 (| ***** | TEST | DATA | CORRE | CTED - | FOR T | NSTRII | MENT | EBRO | R | | |--|---|---|---|---|---|--
--|------------------------------|---------------------| | | | • | USAF | e de la companya | | | | | | | Cest I - many market | ميزر | بمنوبر مخط | | | ری د | | - E A | | | | Configuration | S. 1. 18 18 18 18 18 18 18 18 18 18 18 18 18 | CHEA. | A TOTAL | | renering and and a
Programmer and and a | jerena je izane | | | | | Clight No. | 12 | 7 | 3 | <u> </u> | | -8 | 8 | 8 | 8 | | Cime - Min | 7 | 7.5 | 17.04 | 1.35 | | 128/ | 802 | 8.32 | 8.6 | | AS _krots | 305 | | 2.6 | | 250 | 1242 | 236 | 2.39 | 133 | | ltitude - ft | 32000 | | 126/40 | 738096 | 70/2/ | | 91900 | 72900 | 17.23 | | ir Temp - C | | 77750 | 7750 | 7770 | | -28 | 2220 | - 33 | <u> </u> | | | 015 | 77750 | 945 | | 975 | 1250 | 200 | 17/10 | 773 | | x. Gas Temp — C
x. Gas Press — 9H | 2 3 4 TO | | 777 | N 2 2 3 3 3 4 5 7 7 7 | | 770 | 770 | 1010 | 1201 | | | 115 | 1/20 | 124 | 77.7 | 130 | 7-32 | 724 | 139 | 13 | | uel Flow - cal he | 2 995 宣告进 | | 40.00 | | | | | Same Strate Control | 11-3 | | uel Press - PSI | | E Distriction of the co | ACTION LEVEL | بيوس خين | Z | The Constitution | The State of | 170000 | - | | SECTION AND LOSS AND ASSESSMENT | | See To the Street | 70.0 | Wind Market | | ي دريم والانتهام | Carried Control | | <u></u> | | | Service Commission | Maria de la companya | | 20-1-1 | - | meanly | the company | Diversity and | ٠. | | - Committee of the second | CHI | CH | =LIM | Bul | SCH | DULE | station | electric de proposition (°) | | | onflowention | 16 35 C | LEAN | No more his each | | | erredal esce | و ما در الراسلون و | minimus se | ' | | Hohe No | 8:3 | of State Comments | 12 | 12 | 12 | 12 | 12 | 12- | 12 | | ime - Min are selection | 18.93 | - 14.4 6. 2.57. | 2.86 | 3.27 | 3.67 | 4.12 | 9.74 | 5.36 | 6.0 | | Macknota == | 2235 | **** | 403.5 | 3975 | 376.5 | 370.5 | 362.5 | 352 | 35 | | letende - fe | 19980 | <u> </u> | 6120 | 8100 | 10180 | 12241 | 14360 | 16900 | 184 | | I Temp - C | | (i.emanisa | 43 | 36 | 33 | 2.9 | 28 | 26 | 2 | | BM Same of the same of the same of | 7720 | · Marine | 16.60 | 7730 | 7750 | 7740 | 7740 | 7790 | 77 | | Ges Temp - C | 1010 | Figure 1 | 650 | 665 | 665 | 665 | 665 | 665 | 56 | | T. Cas Press - THe | | | with Party and | | 5 GE 7/14. | | | sates of the | و المحتمدة المان | | nel Flow - salvhe | 142 | 1/mour | 63 | 74~ | 80 | 86 | 94~ | 10/ | 10 | | | الماليات مستعمد ما المالية | Taries and the same | ALGERT CLASSIC | Table 11 11 11 11 11 11 11 11 11 11 11 11 11 | | | 1 | La compa | | | val Prace - DSI | | e esperatura de la composición dela composición de la composición de la composición dela | i Santa ya ji ya sana i sa
na ya wasaya na sana kasa | | <u> </u> | | | <u></u> | <u></u> | | uel Press - Pât | | engelytersen | | Signal Signal | | | | | | | | | EGK
1500 | SLIN | ià- | - SCA | FOUL | FA | | | | eat | | CK
LEAN | SLIM | i i i | - <i>SCI</i> | FOUL | FA | | | | ont
ontimention
light No | 12 | | 521M | 12
72
739 | . /2 | /2 | /2 | | | | ontiguestion
light No. | | 6EAA
12
209 | 12
729 | 12
7.59 | 7.90 | 12
8.05 | J2 /36 | 1/2 | 9,0 | | ontiguestion light No. No Min | 12 (.57 | 2.09
358.5 | 729
334.5 | 12
7.59
391.5 | 7.90
3.21 | 12
8.05
316 | /2
2.36
2.96 B | 1/2
1/67
2.83.5 | | | eat | 12
(57
346
19960 | 209
35 8 .5
222 9 0 | 729
334.5 | 12
7.59
391.5
24900 | 7.90
3.21
2.6380 | 12
8.05
316 | 12
236
2968
31760 | 33490 | 35.74 | | est enfiguration light No ima = Min Entropt titude = ft e Tamp = fc | 12
(,57
346
19960 | 1.69
35 8 .5
22240 | 7 2 9
3 3 4 5
2 3 5 2 0 | 7.59
391.5
24900 | 72
7.90
321
28380
5 | 12
8.05
316
23540 | /2
8.36
2.96.8
3/760 | 33890 | -/
3 | | of configuration light No. Markey things of the configuration co | 12
(,57
346
19960 | 6 E AA
7 0 9
35 8 5
2224 0
1 8
7730 | 7 2 9
7 3 4.5
23520
/6
7730 | 12
7.59
391.5
24900
7730 | 72
7.90
321
2 838 0
5-
7720 | 12
8.05
3/6
29540
2 | 12
8.36
2968
31760
-5 | 33490
- 11
7700 | 34 /
-/
72 (| | officuration light No me - Min Reland titude - ft L. Temp - fc | 12
(.57
346
19960
21
7710 | 6 E AA
7 0 9
35 8 5
2224 0
1 8
7730 | 7 2 9
7 3 4.5
23520
/6
7730 | 7.59
391.5
24900 | 72
7.90
321
28380
5 | 12
8.05
316
23540 | /2
8.36
2.96.8
3/760 | 33890 | 3€ /(
-/
72 (| | officuration light No light No Relmot titude = ft Framp. **C No Relmot Light No Ligh | 12
(.57
346
19960
21
7710 | 6 E AA
7 0 9
35 8 5
2224 0
1 8
7730 | 729
7345
23520
16
7730 | 12
7.59
391.5
24900
11
7730
990 | 72
7.90
321
2 838 0
5-
7720 | 12
8.05
3/6
20540
2
77/0
990 | 12
8:36
2968
31760
-5
77/0
990 | 33490
- 11
7700
975 | 36 JG | | ight No. ight No. Markenot Minus School | 12
(,57
346
19960
21
7710
663 | 4 E AA
7 0 9
35 8 5
2229 0
1 8
7730
965 | 729
729
3345
23520
/6
7730
965 | 12
7.59
391.5
24900
11
7730
990 | 72
790
321
2 836 0
5-
7720
990 | 12
8.05
3/6
29540
2 | 12
8.36
2968
31760
-5 | 33490
- 11
7700 | 36 JG | | Ast ansignmention light No. ma = Min district ditude = ft Flown = C Class Penn | 12
(,57
346
19960
21
7710
663 | 4 E AA
7 0 9
35 8 5
2229 0
1 8
7730
965 | 729
334.5
23520
16
7730
965 | 12
7.59
391.5
24900
11
7730
990 | 72
790
321
2 836 0
5-
7720
990 | 12
8.05
3/6
20540
2
77/0
990 | 12
8:36
2968
31760
-5
77/0
990 | 33490
- 11
7700
975 | 36 J | | Ast ansignmention light No. ma = Min district ditude = ft Flown = C Class Penn | 12
(,57
346
(9960
21
7710
663 | 12 3
12 3
15 6.5
2224 0
18
7730
965 | 7 2 9
3 3 4 5
2 3 5 2 0
1 6
7 7 3 0
9 6 5 | 12
7.59
391.5
24900
11
7730
990 | 72
790
321
28360
5-
7720
990 | 12
8.05
3/6
20540
2
77/0
190 | 12
8:36
2968
31760
-5
77/0
990 | 33490
- 11
7700
975 | 36 JG | | ight No. N | 12
(,57
346
(9960
21
7710
663 | 12
209
358.5
22240
18
7730
965 | 7 2 9
3 3 4 . 5
2 3 5 2 0
/ 6
7 7 3 0
9 6 5 | 12
7.59
391.5
24900
7730
990 | 72
790
321
2830
5
7720
990 | 12
8.05
3/6
2540
2
77/0
990 | 12
8.36
2948
31760
- 5
7770
990 | 33490
- 11
7700
975 | 36 JG | | offiguration ight No The Proof C Class Temp of | 12
(, 57
19960
2)
7710
663 | 6.EAA
12.09
358.5
22240
18
7730
965
123 | 12
7 2 9
3 3 4 .5
2 3 5 2 0
7 7 3 0
9 6 5
1 2 7 | 12
7.59
391.5
24900
7730
990 | 72
790
321
2830
5
7720
990 | 12
8.05
3/6
20540
2
77/0
190 | 12
8.36
2948
31760
- 5
7770
990 | 33490
- 11
7700
975 | 36 J | | ontigueation ight No me - Min Attinde - ft Close Temm - C C | 12
1,57
346
19960
21
7710
663 | 12
209
358.5
22240
18
7730
965 | 12
7 2 9
3 3 4 5
2 3 5 2 0
1 6
7 7 3 0
9 6 5
1 2 7 | 12
7.59
391.5
24900
11
7730
990 | 72
790
321
2830
5
7720
990 | 12
8.05
3/6
2540
2
77/0
990 | 12
8:36
2968
31760
- 5
77/0
144 | 33490
- 11
7700
975 | 36 JG | | officeration light No. Min Service State Service Serv | 12
(,57
346
19960
21
7710
665
119 | 123
123
123
18
1730
123
123 | 12
7 2 9
3 3 4
.5
2 3 5 2 0
7 7 3 0
9 6 5
1 2 7 | 12
7.59
391.5
24900
7730
990 | 72
790
321
2830
57720
990 | 12
8.05
3/6
20540
27/0
990
139 | 136
296
31760
-5
7770
990 | 33490
- 11
7700
975 | 36 JG | | ight No. Min Min Marketter Min Marketter Min | 12
1,57
346
19960
21
7710
663
119 | 123
123
123
18
1730
123
123 | 12
7 2 9
3 3 4 5
2 3 5 2 0
1 6
7 7 3 0
9 6 5
1 2 7 | 12
7.59
391.5
24900
11
7730
990
132 | 12
790
321
2830
5-
7720
990
137 | 12
8.05
3/6
2
2540
2
77/0
990
139 | 12
8.36
2968
3/760
-5
77/0
990
144 | 33490
- 11
7700
975 | 36 JG | | of configuration lish No. The work of the configuration configur | 12
(,57
346
19960
21
7710
665
119 | 123
123
123
18
1730
123
123 | 12
7 2 9
3 3 4 5
2 3 5 2 0
1 6
7 7 3 0
9 6 5
1 2 7
2 1 2
2 1 2 1 | 12
7.59
3.91.5
24900
11
7730
990
132
132
10.29
250 | 12
790
321
2830
5
7720
990
137 | 12
8.05
3/6
22540
2770
990
139
139 | 12
8.36
2968
3/260
-5
77/0
990
144 | 33490
- 11
7700
975 | 36 JG | | ight No. Betwork Hituda oft Cas Pease Signal Liteda wal- wa | 12
1,57
346
19960
21
7710
663
119 | 123
123
123
18
1730
123
123 | 12
7 2 9
3 3 4 5
2 3 5 20
1 6
7 7 3 0
9 6 5
1 2 7
2 7 9 9 9
2 3 5
4 1 3 6 0 | 12
7.59
3.91.5
24900
11
7730
990
132
132
10.29
250 | 12
790
321
28300
5-
7720
990
137 | 12
8.05
3/6
22540
2770
990
139
139 | 12
8.36
2968
31760
-5
7710
990
144 | 33490
- 11
7700
975 | 36 JG | | of configuration lish No. The work of the configuration configur | 12
(,57
346
(,9960
2)
7710
663
(,14
6
7,43
266
38160 | 6 E AN
12
10
358.5
22290
18
7730
915
123
123
9123
9123
9124
9124
9124
9124
9124 | 12
7 2 9
3 3 4 5
2 3 5 20
16
7 7 3 0
9 6 5
1 2 7
2 7 9 9
2 3 5
4 1 3 6 0
- 3 0 | /2
7.59
391.5
24900
7730
990
132
10.29
230
92200 | 12
790
321
2830
5-
7720
990
137
(0.70
236
13140
-39 | 12
8.05
3/6
2540
2
77/0
990
139
139
10.75
228
44/00
-34 | 12
8.36
2968
31760
-5
7710
990
144 | 33490
- 11
7700
975 | 36 JG | | antiguration light No Reknote titude - ft Tamp - C At Press - Big al Place - Big al Place - Big al Press | 12
(,57
346
(,9960
2)
7710
663
(,14
6
12
9,43
266
38160
-23
7700 | 2 2 2 9 0 1 8 7 7 3 c 9 (5) 2 3 3 5 8 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 12
7 2 9
3 3 4 5
2 3 5 2 0
1 6
7 7 3 0
9 6 5
1 2 7
2 3 5
4 1 3 6 0
7 7 1 0 | /2
7.59
391.5
24900
7730
990
132
10.29
230
230
230
230 | 12
790
321
2830
5
7720
990
137
(0.70
236
13160
-39 | 12
8.05
3/6
22540
2
77/0
990
139
139
10.75
228
44100
-34
7700 | 12
8.36
2968
31760
-5
7710
990
144 | 33490
- 11
7700
975 | 36 JG | | ight No. Reknot titude - ft Plant - ft Plant - ft I Gas Pease - tit I Had - gal/he I Pease - P&I At minustion Isht No. Rec Min Rec Knots Ithude - ft I Tomp - fc | 12
1,57
346
19960
21
7710
663
114
9,43
266
38160
7700
945 | 2 2 3 3 5 8 5 6 7 7 3 c 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 | 12
7 2 9
3 3 4 5
2 3 5 2 0
1 6
7 7 3 0
9 6 5
1 2 7
2 3 5
4 3 6 0
2 7 7 0
9 9 9
2 3 5
4 3 6 0
2 7 7 0
9 9 9 5 | /2
7.59
391.5
24900
7730
990
132
10.29
230
92200 | 12
790
321
2830
5-
7720
990
137
(0.70
236
13140
-39 | 12
8.05
3/6
2540
2
77/0
990
139
139
10.75
228
44/00
-34 | 12
8.36
2968
31760
-5
7710
990
144 | 33490
- 11
7700
975 | 36 JG | | onfiguration ight No Min Belong titude of Plann of Cal Temp of Litude of Plant of All Hard or al Plant or leht No ma Min Entrois titude of Temp of Cal | 12
1,57
3,46
1,9960
21
7,710
663
1,74
2,66
3,8160
7,700
9,45 | 6 F AN
12 19 19 18 17 30 18 15 15 15 15 15 15 15 15 15 15 15 15 15 | 12
7 2 9
3 3 4 5
2 3 5 2 0
1 6
7 7 3 0
9 6 5
1 2 7
2 3 5
4 3 6 0
2 7 1 0
9 9 5 | 12
7 59
3915
24900
7730
990
132
132
10.29
230
1200
-32
7200
955 | 12
7.90
3.21
2.630
5-
7720
990
13.7
13.7
2.36
13.140
-3.9
7700
955 | 12
8.05
3/6
22540
2
77/0
990
139
139
10.75
228
44100
-34
7700 | 12
8.36
2968
31760
-5
7710
990
144
11.21
2135
75230
-36
7710
765 | 33490
- 11
7700
975 | 36 JG | | onfiguration ight No ma - Min figuration ithide - ft Tamp - fc Coa Tamp - fc All Months - Min Infiguration Ight No ma | 12
1,57
346
19960
21
7710
665
1,19
6
1,2
9,43
2,66
3,8160
77100
945 | 2 A A A A A A A A A A A A A A A A A A A | 12
7 2 9
3 3 4 5
2 3 5 2 0
1 6 5
1 2 7
1 2 7
2 3 5
4 1 3 6 0
2 7 1 0
9 9 5
1 2 7
2 3 5
4 1 3 6 0
2 7 1 0
9 9 5 | 12
7 59
3915
24900
11
7730
990
132
10.29
230
230
230
230
230
955 | 12
790
321
2830
5
7720
990
137
(0.70
236
13160
-39 | 12
8.05
3/6
22540
2
77/0
990
139
139
10.75
228
44100
-34
7700 | 12
8.36
2968
31760
-5
7710
990
144 | 33490
- 11
7700
975 | 36 JG | | iche Nomen der State S | 12
1,57
3,46
1,9960
21
7,710
663
1,74
2,66
3,8160
7,700
9,45 | 2 A A A A A A A A A A A A A A A A A A A | 12
7 2 9
3 3 4 5
2 3 5 2 0
1 6 5
1 2 7
- 2 7
2 3 5
4 1 3 6 0
- 3 0
2 7 1 0
9 9 5
1 2 7 | 12
7 59
3915
24900
7730
990
132
132
10.29
230
1200
-32
7200
955 | 12
7.90
3.21
2.630
5-
7720
990
13.7
13.7
2.36
13.140
-3.9
7700
955 | 12
8.05
3/6
22540
2
77/0
990
139
139
10.75
228
44100
-34
7700 | 12
8.36
2968
31760
-5
7710
990
144
11.21
2135
75230
-36
7710
765 | 33490
- 11
7700
975 | 36 16
22 6
96 | | ontigueation ight No History | 12
1,57
346
19960
21
7710
665
1,19
6
1,2
9,43
2,66
3,8160
77100
945 | 6 F AN
12
10
358.5
22290
18
7730
965
123
6 F AN
12
123
40290
7710
945 | 12
7 2 9
3 3 4 5
2 3 5 2 0
1 6 5
1 2 7
1 2 7
2 3 5
4 1 3 6 0
2 7 1 0
9 9 5
1 2 7
2 3 5
4 1 3 6 0
2 7 1 0
9 9 5 | 12
7 59
3915
24900
7730
990
132
10.29
230
230
230
230
720
955 | 12
7.90
3.21
2.630
5-
7720
990
13.7
13.7
2.36
13.140
-3.9
7700
955 | 12
8.05
3/6
22540
2
77/0
990
139
139
10.75
228
44100
-34
7700 | 12
8.36
2968
31760
-5
7710
990
144
11.21
2135
75230
-36
7710
765 | 33490
- 11
7700
975 | 36 16
27 96 | | TEST . | DATA | CORRE | CTED | FOR I | NSTRU | MEN. | ERRO | R | | |--|---|---
--|--|---|---|--|--|---| | | | | USAL | | | | William Minn St. of | ** | | | Cost | T 7 77 | | Alle Market | 1 / 1 - 12 | J. 0 | 1200111 | | | - | | | and the second of the second | د در آزاد که نا ستان و ۳۳
از بازی د ست و از می شمیر | istoria. Esta de la Est
Esta de la Esta E | 1.4 days . T | San mark best Co | A. K. K.K. | Car | | * in | | Configuration | | GAEGI | 1.5 | | · | | 9 | 9 | | | Elight No. | 17 47 | 1760 | 1 373 | 157 | 12.72 | 17 7 5 | Date weeksman | | T 4.19 | | Time - Min | 1. | المريع السلم | and and a | J. March | 1 4 14 | 4 4 | 15,74 | 2 63 | +TZ | | AS - K-GAR | والمراج المراجع والمستسلس | 300 | 1711 | 1 3 4 | 1 2 20 | | 125/ | 119/12 | 1220 | | Altitude - ft | 16,00 | 12120 | 122.80 | 14140 | 119020 | 16220 | 177770 | 20000 | 1220 | | Air Temp C | 125 | 130 | 126 | 1820 | 78/0 | 120 | 7800 | 1-4- | 4 | | RPM | | 2820 | | | | 12800 | | | 776 | | Cx. Cas Temp - C | 66" | 665 | 665 | 665 | 6.25 | 625 | 675 | 625 | 675 | | CK. (iss Pross - SH | <u> </u> | | | | | | | | | | Fual and - cal | 57 | | 66 | 70 | 17/ | 75 | 79 | 84 | 8 | | Fuel Flow - gel/hr | | 1 | | | | | | 1 | <u> </u> | | Fue. Press - PSI | | <u> </u> | rest | CHE | CAC | 21M | 13 - | - SCA | ISDUL | B B | | | | Configuration | | LEA | V | | | | | | | | Hight No. | 9 | 1 9 | 9 | 9 | 9 | 9 | 7 | 7 | 7 | | l'ime - Min | 9.67 | 5.14 | 5.70 | 6.21 | 6.67 | 7.63 | 8.42 | 9,73 | 105 | | AS - KROLS | 132/ | 309.5 | 3045 | 2965 | 276 | 1277 | 1525 | 256 | 52 | | Altitude - ft | 24/80 | 309,5 | 28000 | 29980 | 1 -1000 | 34140 | 36020 | | 2000 | | Air Temp-°C | 1-4 | / | -4 | 7 | 1-73 | 1 - 57 | -23 | -26 | 3 | | PM | 7760 | 122/0 | 7760 | <u> </u> | 7730 | 7776/1 | | 7760 | 22 | | | 675 | 165 | 1295 | 675 | 665 | 1750 | 67.5 | 465 | 67 | | Cx. Oss Temp-°C | | 1663 | 1-2- | 623 | 1-62 | 6/2 | 1673 | 1 6 6 J | 162 | | br. Gra Press - "Hg | 94 | 99 | 103 | 107 | | | 1 7 7 | 7-3-3 | 135 | | | 74 | LZZ_ | 1200 | 1 | 110 | 117 | 125 | 130 | 1/20 | | CHAL MEGG - GET | | 1 | | | | | | | | | red Flow - gal/hr | | | | | 6-1/ | - 6/11 | . . | | | | nel Flow - gal/hr
rel Press - PSI | CHE | CAC | ZIM | 18-2 | SGH | 5DVL | 5 B | | | | real Flow — gal/hr
real Press — PSI
rest
configuration | C 4 E | CH C | | 9 | 9 | | 13 | 14 | 19 | | real Flow — gal/hr real Press — PSI Cast Cast Castignization Flight No. | 9 | CH (
LEAN) | 9 | 9 | 9 | | 13 |).4
3.34 | 19 | | real Flow — gal/hr real Press — PSI Cast Cast Castiguration Flight No. Sinc — Min. | 9 | LEAN
9 | 9 | 9
15.05 | 9 | | /4
3.03 | 14
3.34
402.5 | | | real Flow — gal/hr real Press — PSI Cast Cast Casfiguration Flight Mo. Nuc. — Min. All = knote | 9 // 22 2 4 | 11.98
240 | 9
12,91
2.29 | 9
15.05
226 | 9
/4.98
217.5 | | 14
3.03
414 | 74
3.34
402.5
7980 | 347. | | real Flow — gal/hr real Press — PSI Cast Cast Cast Cast Cast Cast Cast Cas | 9
//.22
294
40980 | LEAN
9
11.98
240
92000 | 9
12,9/
229
43000 | 9
15.05
226
44000 | 9
14.98
217.5
75/00 | | 14
3.03
414
6200 | 7980 | 398.
1016 | | real Flow—gal/hr real Press—PSI Cast Cast Cast Cast Cast Cast Cast Cas | 9
11,22
24
40980
-35 | 11.98
240
92.000
-38 | 9
12.91
2.29
43.000
-39 | 9
15.05
226
44000
-37 | 9
/4.9 8
2.17.5
75/00
-31 | | 19
3.03
919
6200 | 7980 | 397.
1016
36 | | real Flow — sai/hr real Press — PSI cest cestignization light Mo. | 9
11.22
244
40980
-35
2760 | 11.98
240
92000
-38 | 9
12.91
229
43000
-39
7770 | 9
15.05
226
44000
-37
7750 | 9
/4,98
2,/7,5
45/00
-3/
7780 | | /4
3 03
9/1
6200
14
7750 | 7980
41
7720 | 397.
1016
36
778 | | Twel Used — gal
Prel Flow — gal/hr
Trei Press — PST
Cast
Cast
Cast
Cast
Cast
Cast
Cast
Cast | 9
11.22
244
40980
-35
2760 | 11.98
240
92.000
-38 | 9
12.91
229
43000
-39
7770 | 9
15.05
226
44000
-37 | 9
/4,98
2,/7,5
45/00
-3/
7780 | | 19
3.03
919
6200 | 7980
41
7720 | 397.
1016
36
778 | | real Flow — gai/hr real Press — PST Test | 9
11.22
294
40980
-35
2760
675 | 11.98
11.98
240
92.000
-38
7770
673 | 9
12.91
2.29
43.000
-39
777.0 | 9
15.05
226
44000
-37
7750 | 9
/4,98
2/7,5
45/00
-3/
7780
665 | | 19
3 03
9/4
6200
94
7750 | 7980
41
7720
650 | 397.
10/6
36
178 | | real Flow — gal/hr real Press — PSI Cast Cantiguration Flight Mo. The | 9
11.22
294
40980
-35
2760
675 | 11.98
240
92000
-38 | 9
12.91
229
43000
-39
7770 | 9
15.05
226
44000
-37
7750 | 9
/4,98
2,/7,5
45/00
-3/
7780 | | /4
3 03
9/1
6200
14
7750 | 7980
41
7720 | 397.
1016
36
178 | | Trai Flow - gai/hr Trai Prass - PST Trai Prass - PST Trai Prass - PST Trai Prass - Train - C Train | 9
11.22
294
40980
-35
2760
675 | 11.98
11.98
240
92.000
-38
7770
673 | 9
12.91
2.29
43.000
-39
777.0 | 9
15.05
226
44000
-37
7750 | 9
/4,98
2/7,5
45/00
-3/
7780
665 | | 19
3 03
9/4
6200
94
7750 | 7980
41
7720
650 | 397.
1016
36
178 | | real Flow — sai/hr real Press — PSI Cast Cast Castignvation Flight Mo. Vine — Min. All — knote Vintuda — ft ir Tamp — G Dir Cast — San — San San Tamp — G | 9
11.22
294
40980
-35
2760
675 | 11.98
11.98
240
92.000
-38
7770
673 | 9
12.91
2.29
43.000
-39
777.0 | 9
15.05
226
44000
-37
7750 | 9
/4,98
2/7,5
45/00
-3/
7780
665 | | 19
3 03
9/4
6200
94
7750 | 7980
41
7720
650 | 397.
1016
36
178 | | real Flow — sai/hr real Press — PSI Cast Cast Castignvation Flight Mo. Vine — Min. All — knote Vintuda — ft ir Tamp — G Dir Cast — San — San San Tamp — G | 9
11.22
294
40980
-35
2760
675 | 11.98
11.98
240
92.000
-38
7770
673 | 9
12.91
2.29
43.000
-39
777.0 | 9
15.05
226
44000
-37
7750 | 9
/4,98
2/7,5
45/00
-3/
7780
665 | | 19
3 03
9/4
6200
94
7750 | 7980
41
7720
650 | 397.
1016
36
178 | | real Flow — gai/hr real Press — PST Cast | 9
//.22
244
40980
-35
7760
675 | 11.98
11.98
240
92000
-38
7770
675 | 9
12.91
229
43000
-39
7770
(73 | 9
15.05
226
44000
-37
7750
665 | 9
/4.98
2/7.5
75/00
-3/
7780
665 | | 77
3.03
9/19
6200
94
7730
650 | 7980
41
7720
650 | 10/6 | | Trai Flow - gai/hr Trai Prass - PST Cast | 9
11.22
244
40980
-35
7760
675
139 | 11.98
240
92000
-38
7770
675
143 | 9
12.91
229
43000
-39
7770
(73 | 9
15.05
226
44000
-37
7750
665 | 9
/4.98
2/7.5
75/00
-3/
7780
665 | | 77
3.03
9/19
6200
94
7730
650 | 7980
41
7720
650 | 397.
1016
36
178 | | real Flow — sai/hr real Press — PSI Cast Cast Cast Cast Cast Cast Cast Cas | 9
11.22
244
40980
-35
2760
675
139 | 11.98
11.98
240
92000
-38
7770
675 | /
9
12.9/
229
43000
-39
7770
(73
197 | 9
15.05
226
44000
-37
7750
665 | 9
/4.98
2/7.5
75/00
-3/
7780
665 | | 77
3.03
9/19
6200
94
7730
650 | 7980
41
7720
650 | 397.
10/6
36
178
66' | | Tasi Flow — gai/hr Tasi Press — PST Cast | 9
11.22
244
40980
-35
2760
675
139 | 11.98
240
92000
92000
-38
7770
675
143 | 9
12.91
2.29
43.000
-37
7770
(75
197 | 9
15.05
126
44000
-37
7750
665
158 | 9
74.98
2.77.5
45.700
7.780
665
166 | EDUL. | 77
3.03
9/19
6200
94
7730
650 | 7980
41
7720
650 | 397.
10/6
36
178 | | real Flow — sai/hr real Press — PSI Cast Cast Cast Cast Cast Cast Cast Cas | 9
11.22
244
40980
-35
2760
675
139 | 11.98
240
92000
-38
7770
675
143 | 9
12.91
2.29
43.000
-39
-39
(75
(75
197 | 9
15.05
126
44000
-37
7750
665
15.8 | 9
/4.98
2.17.5
45/00
-31
7780
665
/665 | EDUL-19 6.86 | 14
3.03
9/4
6200
1750
650
66 | 7980
41
7720
650
71 | 397.
10/6
36
178
66
 | | real Flow — sai/hr real Press — PSI Cast Cast Cast Cast Cast Cast Cast Cas | 9
11.22
244
40980
-35
2760
675
139 | 11.98
240
92000
92000
-38
7770
675
143 | 9
12.9/
229
43000
-39
-7770
(75
147
5.44
377.5 | 9
15.05
226
44000
-37
7750
665
15.8
15.8 | 9
/4.98
2.17.5
75.00
-31
7780
665
/665
/665
/665 |
EDUL
19
6. 84
341 | 74
3.03
9/4
6200
7750
650
66 | 7980
41
7720
650
71
738
319 | 79
79
79
79
75
75 | | Tasi Flow — gai/hr Tasi Press — PST Cast | 9
11.22
244
40980
-35
2760
675
139 | 11.98
240
92000
92000
-38
7770
675
143 | 9
12.91
2.29
43.000
-39
-39
(75
(75
197 | 9
15.05
226
44000
-37
7750
665
/58
/58 | 9
/4.98
2/7.5
75/00
-37
7780
665
/665
/665
/665
/7900 | EDUL
19
6.84
341
22000 | 14
3.03
9/1
6200
1750
650
66 | 7980
41
7720
650
71
738
319 | 79
79
79
79
75
75 | | Tasi Flow — gai/hr Tasi Press — PST Cast | 9
11.22
244
40980
2760
675
139 | 11.98
240
92000
-38
7770
673
/43
289
4.87
389
/4040 | 9
12.9/
229
43.000
-39
7770
(75
/77
/77
/77
/77
/77
/77
/77
/77
/77
/ | 9
15.05
226
44000
-37
7750
665
15.8
15.8 | 9
/4.98
2.17.5
75.00
-31
7780
665
/665
/665
/665 | EDUL
19
6.84
341
22000 | 74
3.03
9/4
6200
7750
650
66 | 7980
41
7720
650
71
738
319
21260 | 391.
10/6
36
178
66
28
280
280 | | Trail Flow - gai/hr Trail Prass - PST Cast Cast Cast Cast Cast Cast Cast Cas | 79
11.72
794
70980
673
139
139
4,20
3815
12160 | 11.98
240
92000
92000
-38
7770
675
143 | 9
12.9/
229
43.000
-39
-7770
675
147
 | 9
15.05
226
44000
-37
7750
665
/58
/58
/190
359
/1960
26
/780 | 9
/4.98
2/7.5
75/00
-37
7780
665
/665
/665
/665
/7900 | FDV1-1
19
6. 91
391
22000 | 74
3.03
9/4
6200
7750
650
66 | 7980
41
7720
650
71
738
319
21260
7790 | 79
778
778
664
75
75
75
75
773 | | Trail Proce - pai/hr Trail Proce - PST Trail Proce - PST Trail Proce - PST Trail Proce - Ft Trail Proce - Ft Trail Proce - PST | 79
11.72
794
70980
673
139
4,20
381,5
12160
32
7770 | 11.98
240
92000
92000
92000
92000
673
(43
(43
143
148
1400
1400
1800 | 9
12.9/
229
43.000
-39
-7770
675
197
-5.49
377.5
15780
30
7800 | 9
15.05
226
44000
-37
7/50
665
/58
/58
/9
5:40
3:59
/7960
26 | 9
/4.98
2/7.5
75/00
77/80
665
//6
//6
//9
350
//9/00
22
7/70 | EDUL-
19
6.81
391
22000
18
7750 | 14
3 03
9/4
6200
44
7730
650
66
 | 7980
41
7720
650
71
738
319
21260
7790 | 79
778
66
778
778
778
775
757
757
757
773 | | Trail Flow — gai/hr Trail Pross — PST Cast Ca | 79
11,72
79
70,980
6,75
139
6,20
381,5
12,160
32
7770
1,65 | 11.98
240
92000
-38
7770
673
/43
289
4.87
389
/4040 | 9
12.9/
229
43.000
-39
-7770
675
/47
5.44
377.5
/5780
30
7800
675 | 9
15.05
226
44000
-37
7750
665
/58
/58
/190
359
/1960
26
/780 | 9
/4.98
2.17.5
75.00
-31
7780
665
166
166
5CH
4.31
350
79900
22 | FDV1-1
19
6. 91
391
22000 | 14
3 03
9/1
6200
7730
650
66
66
19
2,/2
33/
24020
13 | 7980
41
7720
650
71
738
319
21260 | 79
778
778
664
736
736
7280
7280
773
7035 | | Trail Flow - gai/hr Trail Pross - PST Cast Cast Cast Cast Cast Cast Cast Cas | 79
11,72
79
70,980
6,75
139
6,20
381,5
12,160
32
7770
1,65 | 11.98
240
92000
-38
7770
673
143
143
144
149
14040
31
7800
625 | 9
12.9/
229
43.000
-39
-7770
675
197
-5.49
377.5
15780
30
7800 | 9
15.05
226
44000
-37
7750
665
/58
/58
/190
359
/1960
26
/780 | 9
/4.98
2/7.5
75/00
77/80
665
//6
//6
//9
350
//9/00
22
7/70 | FDV1-1
19
6. 86
391
22000
12
7250
1010 | 14
3 03
9/4
6200
44
7730
650
66
 | 7980
41
7720
650
71
238
319
21260
7710
1025 | 79
778
778
664
736
736
7280
7280
773
7035 | | Test Press - PSI Test Press - PSI Test Press - PSI Tight Ma Time - Min AS - knots Title Press - The Test Press - The Test Press - The Test Press - PSI Test Press - The | 79
11.72
794
70980
673
139
4,20
3815
12160
32
7770
165 | 11.98
240
92000
92000
92000
92000
673
(43
(43
143
148
1400
1400
1800 | 9
12.9/
229
43.000
-39
-7770
675
/47
5.44
377.5
/5780
30
7800
675 | 9
15.05
226
44000
-37
7750
(65
15.8
15.8
15.9
5.90
35.9
17960
26
7780
475 | 9
/4.98
2.17.5
75.00
6.31
7.780
6.65
1.66
1.66
1.66
1.66
1.99
6.31
33.0
1.9900
22
1.770
6.75 | EDUL-
19
6.81
391
22000
18
7750 | /4
3 03
9/4
6200
44
7730
650
66
 | 7980
41
7720
650
71
738
319
21260
7790 | 79
778
66
778
778
778
775
757
757
757
773 | | real Flow—gal/hr real Press—PSI real Press—PSI real Press—PSI real Man As — knote littude—ft real Press—The real Press—The real Press—PSI Psi | 79
11,72
79
70,980
6,75
139
6,20
381,5
12,160
32
7770
1,65 | 11.98
240
92000
-38
7770
673
143
143
144
149
14040
31
7800
625 | 9
12.9/
229
43.000
-39
-7770
675
/47
5.44
377.5
/5780
30
7800
675 | 9
15.05
226
44000
-37
7750
(65
15.8
15.8
15.9
5.90
35.9
17960
26
7780
475 | 9
/4.98
2.17.5
75.00
6.31
7.780
6.65
1.66
1.66
1.66
1.66
1.99
6.31
33.0
1.9900
22
1.770
6.75 | FDV1-1
19
6. 86
391
22000
12
7250
1010 | /4
3 03
9/4
6200
44
7730
650
66
 | 7980
41
7720
650
71
238
319
21260
7710
1025 | 79
778
778
664
736
736
7280
7280
773
7035 | 1. 1 1 { } . . . | Test 1 | DATA (| | | | | | EKKO | ĬŠ | | |--|---|--|---|--|--
--|--|--|--| | Market market and the second | | F 86F | USAF | | 51 135(| | paralleonara mas m | Constituting photol decree spen property | | | l'est | JUHE | CAS | -6/11 | 133 | 2 CHE | DULE | <u>H</u> | | | | Configuration | | CLE | + N' | | | | <u>. </u> | | | | Flight No. | 19 | 12 | · | 12 | 17 | | 19 | | | | Time - Min | 1 88 | 818 | 8.60 | 12.75 | 17,27 | 9.62 | 9.82 | | | | IAS -kugus | 29/ | 80.5 | 272 | 269 | 257.5 | | 2.31 | 227 | 231 | | Altitude – ft | 30/80 | 32010 | 37466 | | 37820 | | | 42020 | 430 | | Air Tamp - °C | 19 | -11 | -/6 | -2/ | - 2.4 | -29 | -3/ | -34 | -35 | | RPM | 2730 | 7720 | 7720 | 7700 | 7690 | | 7690 | 7690 | 769 | | Ex. Gas Temp - °C. | 1030 | 1010 | 772 | 975 | 975 | 975 | 990 | 990 | 290 | | Ex. Gas Pross - "H | 8 | | | 7 77 | | | | | 1 | | Fuel Haed - gal | 137 | 138 | 144 | 148 | 151 | 155 | 157 | 160 | 169 | | Fuel Flow - gal/hr | | | ļ <u>.</u> | ļ | <u> </u> | ļ | ļ | | ļ | | Fuel Press - PSI | <u> </u> | ļ | <u> </u> | <u> </u> | <u> </u> | | | | <u> </u> | | | | | | | | | | | | | | 12772 | 777 | , , , , , | | | | | | | | Test | | CH ! | | 10 - | -36H | E DV LE | | | | | Configuration | 1/4 | et CA | | 1 7 7 | 7 - 77 | | | 1 10 | יכבי ז | | Flight No. | | | 126 | 1 3/6 | 76 | 13/6 | 1 2 2 - | 16 | 1 | | Cime - Min | 10.90 | | 2,28 | 2,63 | 3,04 | 3,50 | 4.02 | 12.52 | 4.93 | | AS - Lugte | 226 | <u> </u> | 423 | 708 | 404 | 399 | 378.5 | 37/5 | 359 | | Altitude – ft | 43980 | | 9000 | 5980 | 7960 | 9900 | 12020 | 19060 | 1598 | | Air Temp -°C | -36 | | 46 | 75 | 72 | 3 8 | <u> </u> | 122 | 12/ | | RPM | 7680 | | 7740 | 7750 | 7750 | 7740 | 77.30 | 7720 | 772 | | Ex. Gas Temp-°C | 990 | | 665 | 665 | 665 | 665 | 665 | 6 75 | 67 | | m | I | | | | | | | | | | Ex. Gas Press - "Hg | | | | | 1 / . 4 | سيم رسيد ا | 82 | 189 | 94 | | Tuel Used - gal | 167 | | 57 | 62 | 69 | 75 | 0 / | Q_{ij} | <u></u> | | Tuel Used - gal/hr | 167 | | 57 | 62 | 97 | 75 | 02 | 6./ | | | Tuel Used - gal | 167 | | 57 | 62 | 97 | /5 | 0.2 | | | | Fuel Used - gal
Fuel Flow - gal/hr | 167 | | 57 | 62 | 67 | 75 | 6.2 | | | | Fuel Hand — gal/hr
Fuel Flow — gal/hr
Fuel Press — PSI | 167 | | | | | | | | | | Fuel Used - cal
Tuel Flow - gal/hr
Fuel Press - PSI | 167
CHE | CKC | 21M | | | | | | | | Fuel Used - cal
Fuel Flow - gal/hr
Fuel Press - PSI
Cest
Configuration | 167
CHE | CRC | 21M | | | | | | | | Fuel Used - cal
Fuel Flow - gal/hr
Fuel Press - PSI
Cest
Configuration | 167
CHE | LEAN | 2111 | B ~ | SCH1 | 70VL) | FB (6 | | 76 | | Fuel Used — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fest Lonfiguration Flight No. Firme — Min | 167
CHE
16
5.45 | 6.03 | 2/M
//
6,53 | B ~ | 56H2 | 8,55 | 9.27 | 16 | 72 | | Fuel Used — cal
Fuel Flow — gal/hr
Fuel Press — PSI
Cest
Configuration
Flight No. | 167
CHE
545 | 6.03
341.5 | 2/M
//
4:53
328 | B ~ | 5CH1
7.88
3.11.5 | 70VV
8.55
3.23.5 | 9.27
2.93.3 | /6
/0.29
286.5 | 11.11
22- | | Fuel Used - cal
Fuel Flow - gal/hr
Fuel Press - PSI
Test
Lonfiguration
Flight No.
Fime - Min | 167
CHE
545 | 6.03
341.5 | //
//
6.53
328
22060 | B ~
/6
721
321
34060 | SGH1
7, 8 8
3,1,5
25960 | 70VL
9,55
303,5
18000 | 8
9.27
293.3
29440 | 16 | 11.11
22- | | Fuel Used - cal Fuel Flow - gal/hr Fuel Press - PSI Test Lonfiguration Flight No. Time - Min AS - kn q | 167
CHE
545 | 6.03
341.5 | //
//
6.53
328
22060 | B ~
/6
721
321
34060 | SGH1
7, 8 8
3,1,5
25960 | 70VL
9,55
303,5
18000 | 9.27
2.93.3 | /6
/0.29
286.5 | 11.11
22- | | Fuel Used - cal
Fuel Flow - gal/hr
Fuel Press - PSI
Test
Lonfiguration
Flight No.
Fime - Min | 167
CHE
16
545
344.5
18120
22 | 2.6.03
341.5
20080
17 | 2/M
6,53
328
22060
11 | 8 76 721 321 34060 7680 | 56H2
7,88
3,1,5
25960
3 | \$ 55
3 0 3 5
2800 0
-3
7670 | 9,27
293.3
2994.0
- 8 | 76,29
281,5
32020
-15 | 76
71.77
22:
37:06
-26
77:0 | | Fuel Used - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Test Configuration Flight No. Time - Min AS - kn 's Altitude - t. Alt Temp - C. | 167
CHE
16
5,45
344,5
18120
22 | 2.6.03
341.5
20080
17 | //
//
6.53
328
22060 | 8 76 721 321 34060 7680 | 5CH1
7.88
3.11.5 | 70VL
9,55
303,5
18000 | 9,27
293.3
2994.0
- 8 | 76
70:19
281.5
32020
-13 | 76
71.77
22:
37:06
-26
77:0 | | Fuel Used - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Test Configuration Flight No. Cime - Min AS - kn 's Altitude - t. Alt Tamp - C. IPM | 167
CHE
545
344.5
18120
22
1110
665 | 1.603
391.5
20080
17
17/0
665 | 2/M
6,53
328
22060
11 | 8 76 721 321 34060 7680 | 56H2
7,88
3,1,5
25960
3 | 8.55
3 × 3.5
28000
-3
7676
675 | 9,27
293,3
29940
- B
7660
665 | 76
70.29
286.5
32020
-13
7690
665 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Test Configuration Flight No. Cime — Min AS — kn 's Altitude — t. Air Tamp — C. IPM Ex. Gas Temp — C. Fuel Used — gal | 167
CHE
16
545
344.5
1812.0
22
1110
665 | 2.6.03
341.5
20080
17 | 2/M
6,53
328
22060
11 | 8 76 721 321 34060 7680 | 56H2
7,88
3,1,5
25960
3 | \$ 55
3 0 3 5
2800 0
-3
7670 | 9,27
293.3
2994.0
- 8 | 76,29
281,5
32020
-15 | 1/2
11/1/
27-
3706
-20 | | Fuel Used — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Test Configuration Flight No. Cime — Min AS — kn 's Altitude — t. Air Tamp — C. IPM Ex. Gas Temp — C. Fuel Used — gal | 167
CHE
545
344.5
18120
22
1110
665 | 1.603
391.5
20080
17
17/0
665 | 2/M
6,53
328
22060
11 | 8 76 721 321 34060 7680 | 56H2
7,88
311,5
25960
3
7670 | 8.55
3 × 3.5
28000
-3
7676
675 | 9,27
293,3
29940
- B
7660
665 | 76
70.29
286.5
32020
-13
7690
665 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Cest Configuration Flight No. Fime — Min AS — kn + q Mititude — t. Air Temp — C PM The Cas Press — WHg Fuel Flow — gal/hr | 167
CHE
545
344.5
18120
22
1110
665 | 1.603
391.5
20080
17
17/0
665 | 2/M
6,53
328
22060
11 | 8 76 721 321 34060 7680 | 56H2
7,88
311,5
25960
3
7670 | 8.55
3 × 3.5
28000
-3
7676
675 | 9,27
293,3
29940
- B
7660
665 | 76
70.29
286.5
32020
-13
7690
665 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Test Configuration Flight No. Cime — Min AS — kn 's Altitude — t. Air Tamp — C. IPM Ex. Gas Temp — C. Fuel Used — gal |
167
CHE
545
344.5
18120
22
1110
665 | 1.603
391.5
20080
17
17/0
665 | 2/M
6,53
328
22060
11 | 8 76 721 321 34060 7680 | 56H2
7,88
311,5
25960
3
7670 | 8.55
3 × 3.5
28000
-3
7676
675 | 9,27
293,3
29940
- B
7660
665 | 76
70.29
286.5
32020
-13
7690
665 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Cest Configuration Flight No. Fime — Min AS — kn + q Mititude — t. Air Temp — C PM The Cas Press — WHg Fuel Flow — gal/hr | 167
CHE
545
344.5
18120
22
1110
665 | 1.603
391.5
20080
17
17/0
665 | 2/M
6,53
328
22060
11 | 8 76 721 321 34060 7680 | 56H2
7,88
311,5
25960
3
7670 | 8.55
3 × 3.5
28000
-3
7676
675 | 9,27
293,3
29940
- B
7660
665 | 76
70.29
286.5
32020
-13
7690
665 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used - gal
Fuel Flow - gal/hr
Fuel Press - PSI
Cest
Configuration
Flight No.
Fime - Min
AS - kn 's
Mititude - to
MIT Temp - C
RPM
Fr. Cas Press - Thg
Fuel Flow - gal/hr
Fuel Flow - gal/hr
Fuel Press - PSI | 167
167
16
5.45
349.5
18120
22
1110
665 | 1.5 A A A A A A A A A A A A A A A A A A A | 2/M
/6
6:53
320
22060
11
27/0
675
/// | 8 /6 721 33 1 74060 675 | 56H2
7,88
311.5
25960
3
7670
675 | 8.55
3.23.5
2.8000
-3
76.76
6.75 | 7660
665 | 76
70.29
286.5
32020
-13
7690
665 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used - gal
Fuel Flow - gal/hr
Fuel Press - PSI
Cest
Configuration
Flight No.
Fime - Min
AS - kn 's
Mititude - t.
Mir Temp - C
RPM
Ex. Cas. Temp - C
Ex. Cas. Temp - C
Ex. Cas. Press - Flg
Fuel Flow - gal/hr
Fuel Fress - PSI | 167
167
16
5.45
349.5
18120
22
1110
665 | 1.5 A A A A A A A A A A A A A A A A A A A | 2/M
/6
6:53
320
22060
11
27/0
675
/// | 8 /6 721 33 1 74060 675 | 56H2
7,88
311.5
25960
3
7670
675 | 8.55
3.23.5
2.8000
-3
76.76
6.75 | 7660
665 | 76
70.29
286.5
32020
-13
7690
665 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Flight No. Fime - Min AS - kn 's Air Temp - C RPM Ex. Gas. Temp - C Type Charles - Why Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Fress - PSI Cast Configuration | 167
167
16
5.45
349.5
18120
22
1110
665 | 1.5 A A A A A A A A A A A A A A A A A A A | 2/M
/6
6:53
320
22060
11
27/0
675
/// | 8 /6 721 33 1 74060 675 | 56H2
7,88
311.5
25960
3
7670
675 | 8.55
3.23.5
2.8000
-3
76.76
6.75 | 7660
665 | /6
/0:29
286,5
32020
-15
7690
665
/42 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Flight No. Fime - Min AS - kn 's Air Temp - C IPM L. Gas Temp - C L. Cas Press - Thg Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Cast Configuration Flight No. | 167
167
16
5.45
344.5
18120
22
1710
665
100 | 1.665
1.665
1.766 | 2/M
6,53
328
22060
11
27/0
675 | B /6 721 321 34060 675 //7 | SCH1
7.88
3.11.5
25960
3
7670
(75 | 8.55
3.03.5
18000
-3
76.70
6.75
12.9 | 9.27
293.3
29940
- B
7660
665
/39 | /6
/0:29
286,5
32020
-15
7690
665
/42 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Flight No. Fime - Min AS - kn 's Air Temp - C IPM L. Gas Press - Flo Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Fress - PSI Cest Configuration Flight No. Fime - Min | 167
167
16
5.45
349.5
18120
22
1110
665
100 | 1.65
1.65
2.008
2.008
17
17/0
665
106 | 2/M
6,53
328
22060
11
27/0
675
1// | B /6 721 321 7680 675 //7 | 5CH1
7.88
3.11.5
25960
3
7670
6.75
123 | 7000
8.55
3.23.5
28000
-3
76.76
6.75
12.9
10.06
15.82
23.9 | 766 0
665
7.39
293.3
29940
665
7.39 | /6
/0.19
2865
32020
-15
2690
665
/42 | 7/. //
22:
3406
-24
734 | | Tuel Used — gal/hr Tuel Flow — gal/hr Tuel Press — PSI Cest Configuration Clight No. Lime — Min AS — kn 's Altitude — i. Air Temp — CC LPM Lx Gas Temp — CC LPM Lx Gas Press — Thg Cuel Flow — gal/hr Cuel Flow — gal/hr Cuel Flow — gal/hr Cuel Flow — gal/hr Cuel Flow — PSI Cest Configuration Clight No. Cime — Min AS — knote | 167
167
16
5.45
349.5
18120
22
1110
665
100 | 1.603
241.5
20080
17
17/0
665
106 | 2/M
6,53
328
22060
11
27/0
675
7// | B /6 721 321 7680 675 //7 //443 243 | SCH1
7.88
3.11.5
25960
3
7670
(.75
123
(.75,00
15.00 | 12 9
15,82
13,4
14,00
14,00
15,82
13,9 | 766 0
665
7.39
293.3
29940
665
7.39 | /6
/0.29
2865
32020
-15
2690
665
/42 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Flight No. Fime - Min AS - kn 's Altitude - t Air Temp - C RPM Fx. Cas Press - Flg Fuel Flow - gal/hr | CHE
16
5.45
349.5
18120
22
1110
665
100
CHE
11.93
266
36000 | 20080
1710
665
1263
254
38040 | 2/M
6,53
328
22060
11
27/0
675
7/1
13.88
247
40000 | B /6 721 321 34060 675 //7 /443 243 41020 | 56H2
7.88
311.5
25960
3
7670
675
123
123
123
42060 | 12 9
15,82
13,4
14,00
14,00
15,82
13,9 | 9.27
293.3
29940
- B
7660
665
/39 | /6
/0.19
2865
32020
-15
2690
665
/42
/7.19
222.5
44680 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Flight No. Lime - Min AS - kn Air Temp - C LPM Lx. Gas Press - "Hg Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Fress - PSI Cest Configuration Flight No. Lime - Min AS - knots Lititude = ft Litit | CHE 167 5.45 349.5 18120 22 1710 665 100 CHE 11.93 246 36000 -29 | 20080
17/0
665
106
1263
254
38040 | 2/M
6.53
328
22060
11
27/0
675
7//
7//
40000
-35 | B 76 72 32 340 60 7680 675 //7 /4.43 2.43 41020 -56 | 5CH1
7.88
3.11.5
25960
3
7670
675
123
123
42060
43060
43060
43060 | 7000
8.55
3.03.5
18000
-3
76.70
6.75
12.9
15.82
23.9
48040
-37 | 9.27
293.3
29940
- B
2660
665
/39 | /6
/0.19
2865
32020
-15
2690
665
/42
/7,/4
222.5
44680
-39 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Flight No. Fime - Min AS - kn Air Temp - C RPM Ex. Gas Press - "Hg Fuel Flow - gal/hr Fuel Press - PSI Cast Configuration Flight No. Fime - Min AS - knots Lititude = ft Air Temp - C LEM Cast Configuration Flight No. Fime - Min AS - knots Lititude = ft Air Temp - C LEM | CHE 167 5.45 349.5 18120 22 1110 665 100 CHE 11,93 266 36000 -29 7720 | 20080
1710
665
106
1263
254
38040
7740 | 2/M
6.53
328
3260
11
77/0
675
11/1
4000
-33
7720 | B 76 72 32 32 7680 675 //7 /443 243 41020 -56 7730 | 56H2
7,88
311,5
25960
37670
675
123
42010
-36
7730 | 12 9
15,82
13,4
14,00
14,00
15,82
13,9 | 9.27
293.3
29940
- B
7660
665
/39 | /6
/0.29
2865
32020
-13
7690
665
/42
/2225
44680
-39
7660 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used — gal/hr Fuel Flow — gal/hr Fuel Press = PSI Cest Configuration Flight No. Fime — Min AS — kn As — Famp — C The Gas Press — "Hg Fuel Flow — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Cast Configuration Flight No. Fime — Min AS — knote | CHE 167 5.45 349.5 18120 22 1710 665 100 CHE 11.93 246 36000 -29 | 20080
17/0
665
106
1263
254
38040 | 2/M
6.53
328
22060
11
27/0
675
7//
7//
40000
-35 | B 76 72 32 340 60 7680 675 //7 /4.43 2.43 41020 -56 | 5CH1
7.88
3.11.5
25960
3
7670
6.75
123
123
42060
43060
43060
43060 | 7000
8.55
3.03.5
18000
-3
76.70
6.75
12.9
15.82
23.9
48040
-37 | 9.27
293.3
29940
- B
2660
665
/39 | /6
/0.19
2865
32020
-15
2690
665
/42
/7,/4
222.5
44680
-39 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Flight No. Fime - Min AS - kn gal Flow - gal/hr Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Fress - PSI Cast Configuration Flight No. Fime - Min AS - knots | CHE 167 5.45 344.5 18120 22 1710 665 100 CHE 11.93 246 36000 -24 7720 665 | 20080
17/0
665
106
1263
254
38040
7740
665 | 2/M
6.53
328
22060
11
27/0
675
11/1
40000
-33
7720
665 | B /6 721 321 34060 675 //7 /4.43 2.43 41020 -36 7730 665 | 5CH1
7.88
3.11.5
25960
3
7670
675
123
123
42060
-36
7730
673
6730 | 12
9
15.82
12.39
12.39
12.39
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13. | 7.27
293.3
29940
- B
2660
665
/39
/4020
-38
7750
675 | /6
/0.19
2865
32020
-15
7690
665
/42
/7,19
222.5
4460
-39
260
-39 | 7/2/
3706
-2/
77/
6 6 | | Fuel Used — gal/hr Fuel Flow — gal/hr Fuel Press = PSI Cest Configuration Flight No. Fime — Min AS — kr Altitude — t. Alt Temp — C In. Gas Press — "Hg Fuel Flow — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Cest Configuration Flight No. Fine — Min AS — knote Lititude — ft Lit Temp — C Lititude — ft Lititude — ft Lititude — gal Res Press — WHg Res Lititude — gal | CHE 167 5.45 349.5 18120 22 1110 665 100 CHE 11,93 266 36000 -29 7720 | 20080
1710
665
106
1263
254
38040
7740 | 2/M
6.53
328
3260
11
77/0
675
11/1
4000
-33
7720 | B 76 72 32 32 7680 675 //7 /443 243 41020 -56 7730 | 56H2
7,88
311,5
25960
37670
675
123
42010
-36
7730 | 7000
8.55
3.03.5
18000
-3
76.70
6.75
12.9
15.82
23.9
48040
-37 | 9.27
293.3
29940
- B
2660
665
/39 | /6
/0.29
2865
32020
-13
7690
665
/42
/2225
44680
-39
7660 | 7/2/
3706
-2/
77/
6 6 | | Tuel Used — gal/hr Tuel Flow — gal/hr Tuel Press = PSI Cest Configuration Clight No. Lime — Min AS — kn Lititude — t. Lit Temp — C. Lit. Gas Press — WHg Tuel Flow — gal/hr Luel Flow — gal/hr Luel Press — PSI Cast Configuration Light No. Lime — Min AS — knote Lititude — ft Lititud | CHE 167 5.45 344.5 18120 22 1710 665 100 CHE 11.93 246 36000 -24 7720 665 | 20080
17/0
665
106
1263
254
38040
7740
665 | 2/M
6.53
328
22060
11
27/0
675
11/1
40000
-33
7720
665 | B /6 721 321 34060 675 //7 /4.43 2.43 41020 -36 7730 665 | 5CH1
7.88
3.11.5
25960
3
7670
675
123
123
42060
-36
7730
673
6730 | 12 9
15.82
12.39
12.39
12.39
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13.82
13. | 7.27
293.3
29940
- B
2660
665
/39
/4020
-38
7750
675 | /6
/0.19
2865
32020
-15
7690
665
/42
/7,19
222.5
4460
-39
260
-39 | 7/2/
3706
-2/
77/
6 6 | 東京をこと F Ţ •• | TEST I | ATA (| CORPE | CEED | FOR D | NSTR UI | MEDT. | ERROF | ζ | | |--|---|--
--|--|--|--|--|---
---| | -लक्षाः आधारतस्य रहर ६००० । चार | | | | | <u> (1506</u> | | | | | | 11 A | 16 | | ham belde blikelige. | Making Medica | and the state of t | Section Company | gang tinya nigatin Shiri is a antimir yang in | " WYNES WHAT BURNISHED AT | - | | <u>rest</u> | <u> </u> | LAN
14-1 | 1 But 1 a | C. Marine C. C. | w | | man desert particular to | age over province contempor dist | transportation of the second by | | Configuration | | CE CAN | 14-1 | 14-1 | 14-1 | 14-1 | 14-1 | 14-1 | 14- | | Flight No RUN No. | Let in the | 1 75 | - 19 July - | r 45 / | 1.42 | .50 | 62 | 1 77 | 187 | | Time - Min | 1 4 6 7 | | 1.20 | 15.73 | | | | | | | AS - kuots | 227 | 2/2 | 16 /2 | | 223.5 | 228 | 2,32 | 238 | 244 | | Altituda – ft | 144 20 | 44380 | 144411 CO | 44480 | 44,520 | 11500 | | 44540 | | | Air Temp - °C | -44 | -14 | 7530 | 7530 | 7540 | "A | -4/ | 7560 | -39 | | RPM | 7580 | 7550 | 75.70 | 7530 | 7540 | 7550 | 7550 | 7560 | 2560 | | Ex. Gas Temp - °C | 915 | 3, | 1025 | 235 | 935 | 7-15 | 74.5 | 955 | 25 | | Day Can Day | | - Can | and a Miles of a co | and the state of the same | an Manthaman | aglini inflambilione e sot | The state of s | - | - | | Ex. Gas Press - "He | 307 | -> -> | 308 | 309 | 310 | 3// | マノラー | 3/2 | 3/ | | Fuel Used - gal | 1200 | 307 | 200 | 27 | - 2 L. C. | | | - | | | Fuel Jow - gal/hr | | . L | | | | | | | | | Fuel Press - PSI | <u> </u> | | <u> </u> | 1 ,- | | E . No. of Persons and | <u> </u> | 1 | <u> </u> | rest | AC | CELL | ERAT | 10N | AAFERS - 110 | | | | | | Configuration | | CLE | AN | | | | | | | | Flight No = RUN NO. | 14-1 | 14-1 | 14-1 | 14-1 | 14-1 | ann i haddining diribinin diribi lake ya Parta | 14-2 | 14-2 | 14- | | TIENT MO = UVIV IVV | 92 | 1.02 | カフラ | 17,23 | 1735 | Charles merchen debrus de | 50. | 1-17 | . 22 | | Lima - Min | 7/5 | 255 | 1 / Lang. | 11.50 | 128 | gan ac nghi hiệ nhọc bhí ch nhọc thiế coặc | 206 | 7/7 | 200 | | AS knots | | 422 | 257 | 258 | 158 | | 44400 | 224 | 14 | | Altitude – ft | 14160 | | 14110 | 15 XO | 14620 | | | | | | Air Temp = C | -38 | -37 | -36 | -36 | -36 | | -94 | | 4 | | RPM | 7560 | 7520 | 7580 | 76/0 | 7740 | and a second second second | 7750 | | 763 | | Ex. Gas Temp -°C | 9.55 | 96.5 | 965 | 965 | 825 | 0 m | 675 | 650 | 25 | | Ex. Gas Press - "Hg | | | | | | | l | L | | | | 214 | 3/5 | マノム | 2/7 | 3/7 | | 33/ | 33/ | 33 | | Fuel Used - gal | for district | | and the second | 4 | to a sure of the sure | 5 | | | | | | | | 4 | I . | i | i | i | 1 | ı | | | | | and the second s | 4 | and the second second second | | | | | | Fuel Press - PSI | | | ET (> A-1 | 72.0/ | e je ny tony je so sipis Mary | | | | | | Cost | | CEL | FAN | ngaraga paraga at sandra da | | | | | | | Fuel Press - PSI Fest Configuration | | 14-2 | FAN | ngaraga paraga at sandra da | 14-2 | /4.2 | 14-2 | /4.2 | /4. | | Fuel Flow - gal/hr Fuel Press - PSI Fest Configuration Flight No RVN No. | | 14-2 | FAN | 14-2 | 14-2 | /4·2
-83 | 14-2 | 14.2 | 1.14 | | Fuel Press - PSI Fest Configuration Flight No RVN No. Fime - Min | /4・L
.ヨヱ | 14-2 | 14.2
.52 | 14-2 | 14-2 | /4·2
-83
28:5 | 14-2
-93
210.5 | | 1.14 | | Fuel Press - PSI Fest Configuration Flight No RVN No. Fime - Min AS - knots | /4-L
32
207 | 14-2 | 14-2
152
2// | 14-2 | 14-2 | /4·2
-83
-28:5
44440 | 14-2
-93
210,5 | |],]4
222. | | Fuel Press - PSI Fest Configuration Flight No RVN No. Fime - Min AS - knots Altitude - ft | 14-2
32
207
44526 | 14-2
-42
209
14540 | 14-2
15-2
2/1
44520 | 14-2
-63
2/2,5
44500 | 14-2
73-3
34480 | /4·2
-83
-28:5
44440 | 14-2
-93
-210,5
14410 | |],]4
222. | | Fuel Press - PSI Fest Configuration Flight No RUN No. Time - Min AS - knots Altitude - ft Air Temp - C | 14-2
32
207
44524 | 14-2
-42
209
14540 | 14-2
-52
2/1
44520
-94 | 14-2
.63
2/2.5
44500 | -45 | | -4 | 2.21.5
44420 | 1.14
222
444
-4 | | Fuel Press - PSI Fest Configuration Flight No RUN No. Time - Min AS - knots Altitude - ft Air Temp - C RPM | 14-2
32
207
4454
-46
7620 | 14-2
-42
209
14540
-46 | 14-2
-52
2/1
44520
-94
7620 | 14-2
63
2/2.5
44500
7670 | 7610 | 7620 | 7620 | 221.5
44420
-44- | 1.14 | | Fuel Press - PSI Fest Configuration Flight No RUN No. Time - Min AS - knots Altitude - ft Air Temp - C RPM | 14-2
32
207
44524 | 14-2
-42
209
14540
-46 | 14-2
-52
2/1
44520
-94 | 14-2
63
2/2.5
44500
7670 | -45 | | 7620 | 2.21.5
44420 | 1.14 | | Fuel Press - PSI Fest Configuration Flight No RVN No. Fime - Min AS - knots Altitude - ft Air Temp - C RPM Ex. Gas Temp - C Ex. Gas Press - 8Hg | 14-2
3-3-
207
44522
7620 | 14-2
209
14540
7620 | 14-2
-5-2
-5-2
-5-2
44520
-5-2
-5-0 | 14-2
2/2.5
44500
-46
7610 | 7610 | 7620
650 | 7620
650 | 221.5
44420
-44
7630
650 | 763 | | Fuel Press - PSI Fest Configuration Flight No RVN No. Fime - Min AS - knots Altitude - ft Air Temp - C RPM Ex. Gas Temp - C Ex. Gas Press - 8Hg | 14-2
3-3-
207
44522
7620 | 14-2
-42
209
14540
-46 | 14-2
-5-2
-5-2
-5-2
44520
-5-2
-5-0 | 14-2
2/2.5
44500
-46
7610 | 7610 | 7620
650 | 7620
650 | 221.5
44420
-44
7630
650 | 763 | | Fuel Press - PSI Fost Configuration Flight No RVN No. Time - Min AS - knots Altitude - ft Air Temp - C RPM Ex. Gas Temp - C Ex. Gas Press - #Hg Fuel Used - gal | 14-2
3-3-
207
44522
7620 | 14-2
209
14540
7620 | 14-2
-5-2
-5-2
-5-2
44520
-5-2
-5-0 | 14-2
2/2.5
44500
-46
7610 | 7610 | 7620
650 | 7620
650 | 221.5
44420
-44
7630
650 | 763 | | Fuel Press - PSI Fast Configuration Flight No RVN No. Time - Min AS - knots Altitude - ft Air Temp - C RPM Ex. Gas Temp - C Fr. Gas Press - "Hg Fuel Head - gal Fuel Flow - gal/br | 14-2
3-3-
207
44522
7620 | 14-2
209
14540
7620 | 14-2
-5-2
-5-2
-5-2
44520
-5-2
-5-0 | 14-2
2/2.5
44500
-46
7610 | 7610 | 7620
650 | 7620
650 | 221.5
44420
-44
7630
650 | 763 | | Tuel Press - PSI Configuration Clight No RVN No. Cime - Min AS - knots Altitude - ft Air Temp - C RPM Ex. Gas. Temp - C | 14-2
3-3-
207
44522
7620 | 14-2
209
14540
7620 | 14-2
-5-2
-5-2
-5-2
44520
-5-2
-5-0 | 14-2
2/2.5
44500
-46
7610 | 7610 | 7620
650 | 7620
650 | 221.5
44420
-44
7630
650 | 763 | | Tuel Press - PSI Configuration Clight No RVN No. Cime - Min AS - knots Altitude - ft Air Temp - C RPM Ex. Gas. Temp - C | 14-2
3-3-
207
44522
7620 | 14-2
209
14540
7620 | 14-2
-5-2
-5-2
-5-2
44520
-5-2
-5-0 |
14-2
2/2.5
44500
-46
7610 | 7610 | 7620
650 | 7620
650 | 221.5
44420
-44
7630
650 | 763 | | Cuel Press - PSI Configuration Clight No RVN No. Clime - Min AS - knots Altitude - ft Air Temp - C RPM Ex. Gas Temp - C Ex. Gas Temp - C Ex. Gas Press - "Hg Cuel Flow - gal/br Fuel Press - PSI | 14-1
32
207
4452
-46
7620
650
331 | 264
14-2
209
14540
7620
650 | 74-2
2//
44520
44520
650 | 14-2
.63
2125
44500
-46
7610
650 | 7610 | 7620
650 | 7620
650 | 221.5
44420
-44
7630
650 | 763 | | Fuel Press - PSI Fost Configuration Flight No RVN No. Fime - Min AS - knots Attitude - ft Air Temp - C RPM Tw. Gas Temp - C Tw. Gas Temp - C Tw. Cas Press - "Hg Fuel Flow - gal/hr Fuel Press - PSI | 14-1
32
207
4452
-46
7620
650
331 | 14-2
209
14540
7620 | 74-2
2//
44520
44520
650 | 14-2
.63
2125
44500
-46
7610
650 | 7610 | 7620
650 | 7620
650 | 221.5
44420
-44
7630
650 | 763 | | Test Configuration Clight No.—RVN No. Clight No.—RVN No. Clime - Min AS - knots Altitude - ft Air Temp-°C RPM Cx. Gas. Temp-°C Temp-° | 14-1
32
207
4452
-46
7620
650
331 | 264
14-2
209
14540
7620
650 | 74-2
2//
44520
44520
650 | 14-2
.63
2125
44500
-46
7610
650 | 7610 | 7620
650 | 7620
650 | 221.5
44420
-44
7630
650 | 1, 14
2222
1, 14
1, 14
7, 15
2, 15
3, 15
4, 15
4 | | Cuel Press - PSI Configuration Clight No RVN No. Clime - Min AS - knots Altitude - ft Air Temp - C RPM Cx. Gas Temp - C Cx. Cas Press - "Hg Cuel Flow - gal/hr Cuel Press - PSI Cuel Press - PSI | 14-2
32
207
4452
-46
2620
850
332 | 264
14-2
209
14540
7620
650 | 74-2
2//
44520
44520
650 | 14-2
.63
2125
44500
-46
7610
650 | 7610 | 7620
650 | 7620
650 | 221.5
44420
-44
7630
650 | 1, 14
2222
1, 14
1, 14
7, 15
2, 15
3, 15
4, 15
4 | | Test Configuration Clight No.—RVN No. | 14-1
32
207
4452
-46
7620
650
331 | 264
14-2
209
14540
7620
650 | 74-2
2//
44520
44520
650 | 14-2
.63
2125
44500
-46
7610
650 | -45
7610
650
334
14-2
165 | 7620
650
334 | 7620
650 | 221.5
44420
-44
7630
650 | 1, 14
2222
1, 14
1, 14
7, 15
2, 15
3, 15
4, 15
4 | | Test Configuration Clight No.—RVN No. Clight No.—RVN No. Clight No.—RVN No. Clime - Min As - knots Attude - ft Air Temp - C RPM Cx. Gas Temp - C Cx. Gas Press - "Hg Cuel Used - gal Cuel Flow - gal/br Cuel Press - PSI Configuration Clight No.—RVN No. Cime - Min | 14-2
32
207
4452
-46
2620
850
332 | 264
14-2
209
14540
7620
650 | 74-2
2//
44520
44520
650 | 14-2
.63
2125
44500
-46
7610
650 | -45
7610
650
334
14:2
1.65
232 | 7620
650 | 7620
650 | 221.5
44420
-44
7630
650 | 1.14
-222
1.44
-4.4
-4.5
-5.5
-5.5
-5.5
-6.5
-6.5
-6.5
-6.5
-6 | | Fuel Press - PSI Fost Configuration Flight No RVN No. Flight No RVN No. Fime - Min AS - knots Altitude - ft Air Temp - C RPM Ex. Gas Temp - C Fuel Used - gal Fuel Flow - gal/br Fuel Press - PSI Configuration Flight No RVN No. Fims - Min AS - knots | 14-2
32
207
4452
-46
2620
850
332
ACC | 264
14-2
209
14540
7620
650 | 74-2
2//
44520
44520
650 | 14-2
.63
2125
44500
-46
7610
650 | 7610
650
334
14.2
165
232 | 7620
650
334
14-2
1-74
234 | 7620
650 | 221.5
44420
-44
7630
650 | 1.14
-222
1.44
-4.4
-4.5
-5.5
-5.5
-5.5
-6.5
-6.5
-6.5
-6.5
-6 | | Cuel Press - PSI Configuration Clight No RVN No. Clight No RVN No. Clight No RVN No. Clight No RVN No. Clight No Clight No RVN No. | 14-2
2620
2620
2620
332
44-2
1,23
223,5
44460 | 209
14540
7620
650
332
 | 74-2
76-26
76-26
650
73-3
74-2
74-2
74-2
74-2
74-2 | 14-2
-63
-2/25
-44500
-76/0
-55
-230
-44500 | 7610
650
334
14.2
165
232
44480 | 7620
650
334 | 7620
650 | 221.5
44420
-34
1630
650
333
-44480 | 1.14
-222
1.44
-4.4
-4.5
-5.5
-5.5
-5.5
-6.5
-6.5
-6.5
-6.5
-6 | | Cuel Press - PSI Cost Configuration Clight No RVN No. Clight No RVN No. Clight No RVN No. Clight No RVN No. Clight No Clight No RVN No. C | 14-2
207
4452
-46
2620
650
332
44-2
1,235
44460
-42 | 209
14540
7620
650
332
14-50
1-34
1-34 | 74-2
74-2
76-20
650
73-3
74-2
74-2
74-2
74-2
74-2 | 14-2
-63
-2/2-5
-4500
-76/0
-50
-33-3
-230
-4/ | 7610
650
334
14:2
165
232
44480 | 14-2
1.74
24-4-60 | 184
24
184
244 | 221.5
44420
450
450
333
7.94
237
44480
-43 | 1.12
222
24
763
25
33
2.0
2.4
24
24 | | Test Configuration Clight No.—RVN No. No.—RV | 14-2
207
4452
-46
2620
650
332
44-2
1,235
44460
-42 | 209
14540
14540
650
332
14-2
1-34
1-34
1-42
1-42
7-42
7-640 | 74-2
76-26
76-26
650
73-3
74-2
74-2
74-2
74-2
74-2 | 14-2
-63
-2/25
-44500
-76/0
-55
-230
-44500 | 14:2
1:45
1:45
1:45
1:45
1:45
1:45
1:45 | 14-2
1.74
24-4-60 | 184
24
184
244 | 221.5
44420
-14
1630
650
333
-437
44480
-43
7650 | 12.12
763
763
25
33
24
24
24
766 | | Fuel Press - PSI Fost Configuration Flight No RVN No. Flight No RVN No. Fime - Min AS - knots Air Temp - C RPM Ex. Gas. Temp - C Fuel Vised - gal Fuel Flow - gal/br Fuel Press - PSI Find Press - PSI Find Press - PSI Find Press - FI Find Press - PSI Find Press - PSI Find Press - PSI Find Press - FI Find Press - PSI P | 14-2
207
4452
-46
2620
650
332
44-2
1,235
44460
-42 | 209
14540
7620
650
332
14-50
1-34
1-34 | 74-2
74-2
76-20
650
73-3
74-2
74-2
74-2
74-2
74-2 | 14-2
-63
-2/2-5
-4500
-76/0
-50
-33-3
-230
-4/ | 7610
650
334
14:2
165
232
44480 | 14-2
1.74
24-4-60 | 184
24
184
244 | 221.5
44420
450
450
333
7.94
237
44480
-43 | 12.12
763
763
25
33
24
24
24
766 | | Test Configuration Clight No.—RVN No. Clight No.—Clight | 14-2
207
4452
4452
50
332
44-2
1,235
44460
650 | 74-2
209
14540
7620
650
782
650
782
7640
650 | 14-2
2//
14520
2//
1620
650
133
14-2
1-46
227.5
44,720
650 | 14-2
-63
2/2/5
44500
-46
-670
333
-230
44500
44500
-41
-650
-650 | 14:2
1650
334
14:2
165
23:2
14480
7650 | 14-2
1-74
1-74
1-74
1-74
1-74
1-74
1-74
1-75
1-76
1-76
1-76
1-76
1-76
1-76
1-76
1-76 | 1620
650
335
1.84
4.45
7650
850 | 221.5
44420
450
450
335
1.94
23.7
44480
-43.7
7650 | 12.12
763
65
33
33
24
34
34
766
766 | | Fuel Press - PSI Fost Configuration Flight No RVN No. Flight No RVN No. Fime - Min AS - knots Altitude - ft Air Temp - C RPM Ex. Gas Temp - C Ex. Gas Press - 8Hg Fuel Flow - gal/br Fuel Flow - gal/br Fuel Press - PSI Finst Configuration Flight No RVN No. Fims - Min AS - knots Altitude - ft Air Temp - C IPM Ex. Gas Temp - C IPM Ex. Gas Temp - C | 14-2
207
4452
4452
50
332
44-2
1,235
44460
650 | 74-2
209
14540
7620
650
782
650
782
7640
650 | 14-2
2//
14520
2//
1620
650
133
14-2
1-46
227.5
44,720
650 | 14-2
-63
2/2/5
44500
-46
-670
333
-230
44500
44500
-41
-650
-650 | 14:2
1650
334
14:2
165
23:2
14480
7650 | 14-2
1-74
1-74
1-74
1-74
1-74
1-74
1-74
1-75
1-76
1-76
1-76
1-76
1-76
1-76
1-76
1-76 | 1620
650
335
1.84
4.45
7650
850 | 221.5
44420
450
450
335
1.94
23.7
44480
-43.7
7650 | 12.12
763
65
33
33
24
34
34
766
766 | | Tost Configuration Flight No.—RUN No. Flight No.—RUN No. Flight No.—RUN No. Flight No.—RUN No. Flight No.—Flight No.—Flig | 14-2
207
4452
4452
50
332
44-2
1,235
44460
650 | 209
14540
14540
650
332
14-2
1-34
1-34
1-42
1-42
7-42
7-640 | 14-2
2//
14520
2//
1620
650
133
14-2
1-46
227.5
44,720
650 | 14-2
-63
2/2/5
44500
-46
-670
333
-230
44500
44500
-41
-650
-650 | 14:2
1650
334
14:2
165
23:2
14480
7650 | 14-2
1-74
1-74
1-74
1-74
1-74
1-74
1-74
1-75
1-76
1-76
1-76
1-76
1-76
1-76
1-76
1-76 | 1620
650
335
1.84
4.45
7650
850 | 221.5
44420
450
450
335
1.94
23.7
44480
-43.7
7650 | 12.12
763
65
33
33
24
34
34
766
766 | | Tost Configuration Clight No.—RUN No. Clight No.—Clight No.—RUN No. Clight | 14-2
207
4452
4452
50
332
44-2
1,235
44460
650 | 74-2
209
14540
7620
650
782
650
782
7640
650 | 14-2
2//
14520
2//
1620
650
133
14-2
1-46
227.5
44,720
650 | 14-2
-63
2/2/5
44500
-46
-670
333
-230
44500
44500
-41
-650
-650 | 14:2
1650
334
14:2
165
23:2
14480
7650 |
14-2
1-74
1-74
1-74
1-74
1-74
1-74
1-74
1-75
1-76
1-76
1-76
1-76
1-76
1-76
1-76
1-76 | 1620
650
335
1.84
4.45
7650
850 | 221.5
44420
450
450
335
1.94
23.7
44480
-43.7
7650 | 763
65
38
38
2.0
2.0
2.4
44
766
65 | | Tost Configuration Flight No.—RUN No. Flight No.—RUN No. Flight No.—RUN No. Flight No.—RUN No. Flight No.—Flight No.—Flig | 14-2
207
4452
4452
50
332
44-2
1,235
44460
650 | 74-2
209
14540
7620
650
782
650
782
7640
650 | 14-2
2//
14520
2//
1620
650
133
14-2
1-46
227.5
44,720
650 | 14-2
-63
2/2/5
44500
-46
-670
333
-230
44500
44500
-41
-650
-650 | 14:2
1650
334
14:2
165
23:2
14480
7650 | 14-2
1-74
1-74
1-74
1-74
1-74
1-74
1-74
1-75
1-76
1-76
1-76
1-76
1-76
1-76
1-76
1-76 | 1620
650
335
1.84
4.45
7650
850 | 221.5
44420
450
450
335
1.94
23.7
44480
-43.7
7650 | 12.12
763
65
33
33
24
34
34
766
766 | J The second I 1 1 1:] Tipo-Car | TEST 1 | JATA (| CORRE | CTED | FOL 1 | USTRU | MEMA | FRRO | 3 | | |--|-------------------------------|---|--|--|---|---|--|---
--| | Laira. L
Tagt | yare m n | E. 80E. | USAF | * til - i | 13 dr. | 12 sedente region neces | in a propose in the second | an Karamate A part was a ray to | سونهيت مهربست | | Coat | | 4 C C E | 44/ | 18 1. 1 Ge | W | | 1 or 100 to 40 | | sufficience and the defendance of | | Configuration Flight No. — RVN No. Fime — Min AS — knots Altitude — ft | + | بمربث مرز | -FAW | | 14 | 1.7.3 | | | | | flight No HVN NO. | 13-1- | 14.5 | 77. | 12/2/ | rall for | 7-155 J | 14-4 | 145 | 14- | | lime = Min | , <u>e</u> | 12:66 | 6-26 | 12:76 | | 6.00 | 446 | 606 | 2.96 | | AS -knols | 12.7. | 14. | 3.46 | 1246 | 1 | 2-4 | 127 | 250 | 25% | | Aitituda — ft | 19990 | F4460 | 49400 | 1444-50 | 47500 | 14500 | 44480 | 1444Q | 4444 | | ALT LAMP - C. | | 7660 | | 7660 | - 3.25 | -3.5 | -35 | 1 2 2 | =35 | | RPM | 7660 | 7660 | 1640 | 7660 | 7660 | 7460 | 7660 | 126.50 | 16.50 | | Ex. Gas Temp - C | 1/2/77 | | 1 /2 (7) | 1 /5/2 | 1 24 (7) | 1 6 5 0 | 1 40 500 | 1 4 (T) | | | Ex. Gas Press - "He
final Used -gal
Fuel Flow - gal/hr | | | | | LATTER 1 | | | | | | Cual Used -gal | 1340 | 341 | 341 | 342 | 3-72 | 343 | 37.5 | 344 | 211 | | the state of s | - | | | | | | | | <u> </u> | | fuel Press - PŚi | | | | 1 | L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | <u> </u> | | | | | | | | | | | | | | | Past | | 4CCE | LERA | TION | ME-100 - 100 - 10- 11- 12- 12- 12- 12- 12- 12- 12- 12- 12 | ويتحصون فلاحان والاجاران والمراد | ه د ده دخوه څه کمپاها پاردې د د د | | ****** | | Configuration | | CL | SAN | | hadan gefer e - egenteti ge ya | i diger manufatur i Pilipi pili e vice a d | teri a persona de la compansión de la comp | | | | Hight No BUN No. | 14-2 | | 11-2 | 74-2 | *************************************** | Arracida mara succession | | 4 | T | | l'ime - Min | 3.06 | 3.17 | 3.22 | | Date or man restates de la face de | | - | *** | | | AS m knots | 2.50 | 254 | 2.52 | 256 | | | | | | | Altitude - ft | ALCON | 7.5.4
44480 | 20-30 | 12711 | auger St. Sepeka, and about | | | | : | | Air Temp-°C | 7.5 | -36 | 3 9 | - 2 | | | | | 1.000 | | RPM | 7650 | 7650 | 7650 | 7650 | eagle () plustered teleprices some | ********* | | | | | Ex. Gas Temp-°C | 22 | 250 | 650 | 650 | | | | | a, | | Cr. Gas Press - "He | | | P.T.C. | <u> </u> | <u> </u> | | | <u> </u> | | | Man State Control of the | 727 | 345 | 245 | 22/ | | | | | - | | | | | | | | | | | | | Finel Hand gal | 27.2 | | 2.7.2 | Z | | | · | | | | Fuel Flow - gal/hr | 373 | | 371 | 7.7. | | | | | | | fuel Flow - gal/hr | | | | | on o gu urb fig. I da me insende
em ur jugallo diskribili ya alikudian
alikudian da a diskribili ya alikudian | Annual world to the state of th | | | | | Fuel Flow - gal/hr Fuel Press - PSI | as got a servente best est pa | Company or "Non-Non Appella Newl". | A. p. agussanti-mid (A. b. b. bay), gastay-t | And a second of the second | er e e e e e e e e e e e e e e e e e e | | | | A San Angele Angel | | Fuel Flow - gal/hr Fuel Press - PSI Fost | | 466 E I | BE A | TION | The second by a second | The control of co | | | | | Fuel Flow - gal/hr Fuel Press - PSI | | 466 E I | A. p. agussanti-mid (A. b. b. bay), gastay-t | 710N | | | | | | | Fuel Flow - gal/hr Fuel Press - PSI Cost Configuration Flight No RUN NO. | | ACE L | BE A | 720 N | 17-1 | 1.7-1 | 17-1 | 72-7 | | | Fuel Used - gal
Fuel Flow - gal/hr
Fuel Pross - PSI
Configuration
Flight No RVN No. | | ACCE! | BE A | 710 N | 17-1 | 2-2 | 17-1 | 12-1 | | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Circa - Min AS -knots | | ACCE! | BE A | 710 N | 17-1 | 2-2 | /7-/
-3/
/88 | 12-1
193 | | | Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No RUN NO. | | ACCE! | BE A | 710 N
17-1
164
19180 | 17-1 | 19800 | 19840 | 1980 | 207 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Time - Min AS -knots Mititude - ft Air Temp - C | | ACCE! | BE A | 710 N
17-1
164
19180 | 17-1 | 19800 | 19840 | 1980 | 20 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Cime - Min AS -knots Mititude - ft Air Temp-°C | | ACCE! | BE A | 710 N
17-1
164
19180 | 17-1 | 19800 | 19840 | 1980 | 20 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Cime - Min AS -knots Mititude - ft Air Temp-°C | | ACCE! | BE A | 710 N
17-1
164
19180 | 17-1 | 19800 | 19840 | 1980 | 20 | | Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No RUN NO. Fixe - Min AS -knots Mittude - ft Air Temp - C RPM Ex. Gas Temp - C | | ACCE! | BE A | 710N
17-1
164
19180
1820
840 | 17-1
17-10
19780
1830
665 | 19800 | 19840
7760
675 | 1980
1880
1870 | 1988
1988
764
764 | | Fuel Flow - gal/hr Fuel Press - PSI Fest Configuration Flight No RUN NO. Fixe - Min AS -knots Mittude - ft Air Temp-°C RPM Ex. Gas Temp-°C | | ACCE! | BE A | 710N
17-1
164
19180
1820
840 | 17-1
17-10
19780
1830
665 | 19800 | 19840
7760
675 | 1980 | 1988
1988
764
764 | | Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No RUN NO. Fixe - Min AS -knots Mittude - ft Air Temp - G RPM Ex. Gas Press - "Hg Fuel Ured - gal | | ACCE! | BE A | 710N
17-1
164
19180
1820
840 | 17-1
17-10
19780
1830
665 | 19800 | 19840
7760
675 | 1980
1880
1870 | 1988
1988
764
764 | | Fuel Flow - gal/hr Fuel Press - PSI Cost Configuration Flight No RUN NO. Cime - Min AS - knots Air Temp - C RPM Ex. Gas Press - "Hg Fuel Head - gal Fuel Flow - gal/hr | | ACCE! | BE A | 710N
17-1
164
19180
1820
840 | 17-1
17-10
19780
1830
665 | 19800 | 19840
7760
675 | 1980
1880
1870 | 1988
1988
764
764 | | Fuel Flow - gal/hr Fuel Press - PSI Cost Configuration Flight No RUN NO. Cime - Min AS - knots Air Temp - C RPM Ex. Gas Press - "Hg Fuel Head - gal Fuel Flow - gal/hr | | ACCE! | BE A | 710N
17-1
164
19180
1820
840 | 17-1
17-10
19780
1830
665 | 19800 | 19840
7760
675 | 1980
1880
1870 | 1988
1988
764
764 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Time - Min AS - knots Mittude - ft Air Temp - C Ex. Gas Temp - C Twel Head - gal/hr Fuel Flow - gal/hr Fuel Press - PSI | | | FAN | 710N
17-1
164
19180
-3-1
1820
840 | 17-10-19780 | 19800 | 19840
7760
675 | 1980
1880
1870 | 1988
1988
764
764 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Fixe - Min AS - knots As - knots Attitude - ft Air Temp - C RPM Ex. Gas Temp - C Fuel Head - gal Fuel Flow - gal/hr Fuel Press - PSI Cost | | ACC | EL E | 7/0N
17-1
164
19780
7820
840
89 | 17-10-19780 | 19800 | 19840
7760
675 | 1980
1880
1870 | 1988
1988
764
764 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Flight No RUN NO. Fixe - Min AS - knots Mittude - ft Air Temp - C RPM Ex. Gas Temp - C Fuel Hed - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration | | ACC | FAN | 7/0N
17-1
164
19780
7820
840
89 | 17-10-19780 | 19800 | 19840
7760
675 | 1980
1880
1870 | 1988
1988
764
764 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Clight No RUN NO. Clime - Min AS - knots Afritude - ft Air Temp - G RPM Ex. Gas Press - "Hg Fuel Head - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Clight No RUN NO. | | ACC | EL E | 7/0N
17-1
164
19780
7820
840
89 | 17-1
19780
1830
1830
90 | 19800 | 17-1 | 1980
1880
1870 | 1988
1988
1645
174 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Fime - Min AS - knots Mittude - ft Air Temp - G RPM Ex. Gas Temp - G Puel Head - gal Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Flight No RUN NO. Fime - Min | | ACC |
EL E | 7/0N
17-1
164
19780
7820
840
89 | 17-10-19780 | 19800 | 19840
7760
675 | 1980
1880
1870 | 17-
1-4 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Clight No RUN NO. Cime - Min AS - knots Mittude - ft Mir Temp - G PM Ex. Gas Press - "Hg Fuel Head - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Clight No RUN NO. Cime - Min AS - knots | | ACC | ECAN
200 A
17-1
8 2
2 35 | 7/0N
17-1
164
19780
7820
840
89 | 17-1
19780
1830
1830
90 | 19800 | 17-1 | 17.5
17.5
17.5
17.5
17.5
28.2 | 17-
1-4 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Fixe - Min AS - knots Mittude - ft Air Temp - G RPM Ex. Gas Temp - C Cr. Gas Press - "Hg Fuel Head - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Flight No RUN NO. Fixe - Min AS - knots Mittude - ft | | ACC | EL E | 7/0N
17-1
164
19780
7820
840
89 | 17-1
19780
1830
1830
90 | 19800 | 17-1 | 1980
1880
1870 | 17-
1-4 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Fixe - Min AS - knots Air Temp - C RPM Ex. Gas Press - "Hg Fuel Head - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Ceat Configuration Flight No RUN NO. Fixe - Min AS - knots Air Temp - C | | ACC | ECAN
200 A
17-1
8 2
2 35 | 7/0N
17-1
164
19780
7820
89
89
19880 | 17-1
19780
19780
1930
90
17-1
1003
19720 | 13.40
19800
1840
1840
1840
17-1
17-1
242
1980 | 17-1
17-1
17-1
17-1
17-1
17-1
273
17880 | 17.5
17.5
17.5
17.5
17.5
28.2 | 17-1
1988
1988
17-1
1288
1988 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Fixe - Min AS - knots Mittude - ft Air Temp - G PM Ex. Gas Temp - G Puel Head - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Flight No RUN NO. Fixe - Min AS - knots Air Temp - G Length Mo RUN NO. Fixe - Min AS - knots Air Temp - C LPM | 17-1
17-1
17880
7630 | Acc
17-1
-7-2
7-7860 | EL E A N 2 35 172 1820 7620 | 7/0N
17-1
164
19780
7820
840
89 | 17-1
19780
1830
1830
90
17-1
1.03
252
19740 | 1840
1880
1840
1840
1840
17-1
17-1
262
1980
7620 | 17-13
17-13
17-13
17-13
17-13
17-13
17-13
17-14 | 1980
1870
265
93
171
282
1980
1620 | 17-1
1988
1988
17-1
17-1
188
1988
1666 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Cime - Min AS - knots Mititude - ft Mir Temp - C RPM Ex. Gas Press - "Hg Fuel Head - gal Fuel Flow - gal/hr Fuel Press - PSI Ceat Configuration Clight No RUN NO. Cime - Min AS - knots Mititude - ft Mir Temp - C LPM Ex. Gas Temp - C LPM Ex. Gas Temp - C LPM Ex. Gas Temp - C | | ACC | ECAN
200 A
17-1
8 2
2 35 | 7/0N
17-1
164
19780
7820
89
89
19880 | 17-1
19780
19780
1930
90
17-1
1003
19720 | 13.40
19800
1840
1840
1840
17-1
17-1
242
1980 | 17-1
17-1
17-1
17-1
17-1
17-1
273
17880 | 17.5
17.5
17.5
17.5
17.5
28.2 | 17-1
1988
1988
17-1
1288
1988 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Flime - Min AS - knots Altitude - ft Air Temp - C RPM Ex. Gas Press - "Hg Fuel Head - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Ceat Configuration Flight No RUN NO. Fime - Min AS - knots At Temp - C RPM Ex. Gas Press - NHg RY Ex. Gas Press - NHg RY Ex. Gas Press - NHg | 17-1
21-7
19880
2635 | ACC
C 2
17-1
- 7'2
22-6
7860 | E A N | 7/0N
17-1
164
19780
7820
89
89
77-1
93
7820
7820
77-1
93
7820
7820
7820 | 17-1
19180
19180
190
190
100
100
100
100
100
100
100
10 | 17-1
17-1
18-10
18-10
18-10
17-13
17-13
17-13
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
10
10
10
10
10
10
10
10
10
10
10
10
1 | 17-1
92
17-1
12-1
273
17880
7620
665 | 7860
7870
73
73
7880
7620 | 7645
94
17-12
288
7626 | | Finel Flow - gal/hr Finel Press - PSI Configuration Flight No RUN NO. Cime - Min AS - knots AS - knots Cas Press - "Hg Fuel Head - gal Fuel Flow - gal/hr Fuel Press - PSI Ceat Configuration Clight No RUN NO. Cime - Min AS - knots k | 17-1
17-1
17880
7630 | Acc
17-1
-7-2
7-7860 | EL E 17-1 3 7820 7620 7620 | 7/0N
17-1
164
19780
7820
89
89
19880 | 17-1
19780
1830
1830
90
17-1
1.03
252
19740 | 1840
1880
1880
1840
1840
17-1
17-1
262
1980
7620 | 17-1
92
17-1
12-1
273
17880
7620
665 | 1980
1870
265
93
171
282
1980
1620 | 17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Clight No RUN NO. Clime - Min AS - knots Aftitude - ft Air Temp - C RM Cas Press - "Hg Fuel Head - gal/hr Fuel Flow - gal/hr Lonfiguration Clight No RUN NO. Clime - Min AS - knots | 17-1
21-7
19880
2635 | ACC
C 2
17-1
- 7'2
22-6
7860 | E A N | 7/0N
17-1
164
19780
7820
89
89
77-1
93
7820
7820
77-1
93
7820
7820
7820 | 17-1
19180
19180
190
190
100
100
100
100
100
100
100
10 |
17-1
17-1
18-10
18-10
18-10
17-13
17-13
17-13
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
17-10
10
10
10
10
10
10
10
10
10
10
10
10
1 | 17-1
92
17-1
12-1
273
17880
7620
665 | 7860
7870
73
73
7880
7620 | 17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | | Test) | JATA (| | | | | | ******** | . E | | |--|--|---|---|--|---|--|--|---|---| | | | F-86F | USAL | No. 51 | - 13506 | | | | | | Test | LACC | ELE | RAI | ION | · · · · · · · · · · · · · · · · · · · | - | | | | | Configuration | | CLBA | W. | r gje, rger delper 4 hanne, gala | · die terr annierte : grap managege | | | <u> </u> | | | Flight NoRUN No. | 1771 | 17.1 | 17-1 | 12-1 | 17-1 | 17-1 | 17-1 | 177-1 | 177. | | Time - Min | 4.54 | 1,67 | 124 | 4.89 | 499 | 209 | 2.15 | 12,25 | 2.35 | | AS . knots | 198 | 306 | 3/4 | 322 | 337 | 340 | 342 | 354 | 36 | | | 19900 | 19940 | 19990 | 19970 | | | 19880 | 19900 | 1992 | | Altitude – ft
Air Temp – G | 3 | 6 | 7 | 8 | 9 | 10 | 12 | 73 | 14 | | RPM | 7610 | 7600 | 7600 | 2600 | 7600 | | 2600 | 7600 | 760 | | Cas Tamp - C | 66.5 | 665 | 665 | 665 | 665 | 665 | 265 | | | | Cx. Gar Press - "H | | | | 0 | - F2 - F2 | - C- | - 6 - 3 | | | | | 104 |
103 | 106 | 107 | 108 | 109 | 110 | 111 | 1/2 | | Fuel Used - gal | 1197 | 100 | 1200 | 1207 | 12 | 107 | 111- | | 1// | | Fuel Flow - gal/br | | | | | | <u> </u> | ļ | <u> </u> | | | Eucl Press - PSI | | <u> </u> | | <u> </u> | <u></u> | <u> </u> | L | 1 | <u> </u> | | | | | | | | | | | | | | | 7 7 7 7 | F | | ··· | | | | | | Cost | | ELER | | <u>N</u> | | ******* | | | | | Configuration | <u> </u> | LEAN | | · · · · · · · · · · · · · · · · · · · | ······································ | | | | | | Flight No - RVN No. | 117:1. | 17-1 | 17-1 | 17-1 | 17:1 | 17-1 | 17-1 | 127-1 | 17- | | Time - Min | 2.46 | 3.57 | 267 | 2.77 | 2.87 | 2,97 | 3,07 | 3.12 | 13,27 | | AS = knots | 1370 | 378 | 384 | 389 | 394 | 400 | 706 | 410 | 199 | | Altituda – ft | 19920 | 19880 | 19880 | 19900 | 19921 | 19920 | 19900 | 19900 | 199 | | Air Temp -°C | 15 | 16 | 17 | 19 | 20 | 21 | 22 | 22 | 7. | | RPM | 7600 | 7600 | 7/10 | 7620 | | 7620 | 7620 | 7620 | | | Ex. Gas Temp-°C | 665 | 650 | 465 | 1.65 | 650 | 665 | 115 | 650 | 664 | | Ex. Cas Press - NHo | | | | 14.5 | | | | | - Bullion | | | | | | | | 1 6 | | | 12 | | | 117 | لخستررا | 1 / / 4- | 1 /// | | | | | | | Fuel Hand - mal | 113 | 114 | 115 | 116 | 118 | 119 | 120 | 121 | | | fuel Hand - gal/hr
fuel flow - gal/hr
fuel Press - PSI | | | en alagnikasina termanisasina | | 77.8 | //9 | /28 | L. 2-1. | | | fuel Hand - gal/hr
fuel Flow - gal/hr
fuel Press - PSI | | ÉLE | RATI | | 778 | 1/9 | /28 | | | | Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration | | | RATIO | | 1/7-1 | 17-1 | 17-1 | /7-/ | | | Fuel Used - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No - RUN NO- | AC.C | ELEA
ELEA
17-1 | RAT (| 6N
17-1 | 17-1 | 17-/ | 17-1 | /7-/ | | | Fuel Used - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No Fires - Min | ACC
17-1
3-38 | ELE
GL&A
17-1
3.48 | RAT (
M
17-1
3.58 | ON
17-1
3.68 | 17-1 | 17-/
3,88 | 17-J8 | 17-1 | | | Fuel Used - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Firms - Min AS - knots | ACC
17-1
338
418 | ELE
CLEA
17-1
3.48
421 | RAT (
N
17-1
3.58
422 | 17-1
3.68
42.5 | 17-1
3.78
423 | 17-/
3.88
423 | 17-1
3. 38
42.3 | 17-1
4:03
1:24 | | | Fuel Used - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Time - Min AS - knots Aithuds - ft | ACC
17-1
338
418
19920 | ELE
CLEA
17-1
3.48
421
19900 | RAT (
N
17-1
3.58
422
19920 | 17-1
3.68
43.5
14900 | 17-1
3.78
423
19.800 | 17-/
3,88
4)3
/9880 | 17-1
3, 38
42.3
19880 | 17-1
4:03
1:24
19880 | | | Fuel Used - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Time - Min AS - knots Attude - ft Ar Term - C | ACC
17-1
3.38
4/8
19920 | ELEA
CLEA
17-1
3.48
421
19900 | RAT (
N
17-1
3.58
422
19920 | 17-1
3.68
43.5
14900 | 17-1
3.78
423
19.800 | 17-/
3,88
4)3
/9880 | 17-1
3, 38
42.3
19880 | 17-1
4:03
1:24
19880 | | | Fuel Used - gal Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN NO. Time - Min AS - knots Aithuds - ft Air Terry - G | ACC
17-1
338
418
14920
34
7620 | ELEA
628A
17-1
3.48
421
19900
25
7620 | RAT (
N
17-1
3.58
422
19920 | 17-1
3.68
43.5
14900 | 17-1
3.78
423
19.800 | 17-/
3,88
4)3
/9880 | 17-1
3, 38
42.3
19880 | 17-1
4:03
1:24
19880 | | | Fuel Hand — gal/hr Fuel Ploy — gal/hr Fuel Press — PSI Configuration Elight Na — RUN No- Time — Mis AS — knots Attitude — ft Air Temp — C LPM Ex. Cas Temp — C | ACC
17-1
3.38
4/8
19920 | ELEA
CLEA
17-1
3.48
421
19900 | RAT (
N
17-1
3.58
422
19920 | 17-1
3.68
42.5 | 17-1
3.78
423
19.800 | 17-/
3,88
4)3
/9880 | 17-1
3, 38
42.3
19880 | 17-1
4:03
1:24
19880 | | | Fuel Hand - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No - RUN NO- Time - Min AS - knots Attitude - ft Air Terry - C PM Ex. Gas Terry - C | ACC
17-1
3-38
448
19920
1-24
7620
650 | ELEA
628A
17-1
3.48
421
19900
25
7620
650 | RAT (
17-1
3.58
422
14920
26
7620
650 | 0N
17-1
3.68
4)3
14900
7630 | 17-1
3.18
423
19.110
26
7630
650 | 17-1
3,88
4)3
19880
7630
650 | 17-1
3.98
423
19880
26
7630
650 | 17-1
4.03
124
19880
26
7630
650 | | | Fuel Used - gal/hr Fuel Plow - gal/hr Fuel Press - PSI Configuration Flight No - RUN NO- Time - Min AS - knots Attitude - ft Air Temp - G RPM Ex. Gas Temp - G Tuel Used - gal | ACC
17-1
338
418
14920
34
7620 | ELEA
628A
17-1
3.48
421
19900
25
7620
650 | RAT (
N
17-1
3.58
422
19920 | 17-1
3.68
43.5
14900 | 17-1
3.78
423
19.800 | 17-/
3,88
4)3
/9880 | 17-1
3, 38
42.3
19880 | 17-1
4:03
1:24
19880 | | | Fuel Hand — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fast Configuration Flight No.— RUN NO- Firms — Min AS — knots Attituds — ft Air Temp — C RPM Fx. Gas Temp — C Fx. Gas Press — BHg Fuel Flow — gal/hr | ACC
17-1
3-38
448
19920
1-24
7620
650 | ELEA
628A
17-1
3.48
421
19900
25
7620
650 | RAT (
17-1
3.58
422
14920
26
7620
650 | 0N
17-1
3.68
4)3
14900
7630 | 17-1
3.18
423
19.110
26
7630
650 | 17-1
3,88
4)3
19880
7630
650 | 17-1
3.98
423
19880
26
7630
650 | 17-1
4.03
124
19880
26
7630
650 | | | Fuel Hand - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Flow - gal/hr Fuel Flow - gal/hr | ACC
17-1
3-38
448
19920
1-24
7620
650 | ELEA
628A
17-1
3.48
421
19900
25
7620
650 | RAT (
17-1
3.58
422
14920
26
7620
650 | 0N
17-1
3.68
4)3
14900
7630 | 17-1
3.18
423
19.110
26
7630
650 | 17-1
3,88
4)3
19880
7630
650 | 17-1
3.98
423
19880
26
7630
650 | 17-1
4.03
124
19880
26
7630
650 | | | Fuel Hand - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Flow - gal/hr Fuel Flow - gal/hr | ACC
17-1
3-38
448
19920
1-24
7620
650 | ELEA
628A
17-1
3.48
421
19900
25
7620
650 | RAT (
17-1
3.58
422
14920
26
7620
650 | 0N
17-1
3.68
4)3
14900
7630 | 17-1
3.18
423
19.110
26
7630
650 | 17-1
3,88
4)3
19880
7630
650 | 17-1
3.98
423
19880
26
7630
650 | 17-1
4.03
124
19880
26
7630
650 | | | Fuel Hand - gal Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No RUN NO- Fire - Min AS - knots Aitituds - ft Mr Tarry - C RPM Ex. Gas Tarry - C Fy. Gas Press - NHg Fuel Flow - gal/hr Fuel Fress - PSI | ACC
17-1
338
418
14920
324
7620
650 | ELEA
17-1
3.48
421
19900
25
7620
650 | 2 AT (
) 17-1
3:58
422
19920
26
7720
650
126 | 17-1
3.68
43.3
/4900
7/30
6.30 | 17-1
3.18
423
19.110
26
7630
650 | 17-1
3,88
4)3
19880
7630
650 | 17-1
3.98
423
19880
26
7630
650 | 17-1
4.03
124
19880
26
7630
650 | | | Fuel Hand - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No RUN NO- Fire - Min AS - knots Aitituds - ft Air Terry - C RPM Fw. Gas Terry - C Fw. Gas Terry - C Fw. Gas Press - NHg Fuel Flow - gal/hr Fuel Fress - PSI | ACC
17-1
338
418
14920
324
7620
650 | ELE/
ELE/
ELE/
ELE/ | RAT (
17-1
3.58
1920
26
7620
650
126 | 17-1
3.68
43.3
/4900
7/30
6.30 | 17-1
3.18
423
19.110
26
7630
650 | 17-1
3,88
4)3
19880
7630
650 | 17-1
3.98
423
19880
26
7630
650 | 17-1
4.03
124
19880
26
7630
650 | | | Fuel Hand — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fast Configuration Flight No — RUN NO- Fizna — Min AS — knots Aitituds — ft Air Terrup — C RPM Fr. Gas Terrup — C Fr. Gas Press — NHg Fuel Flow — gal/hr Fuel Fress — PSI Cest Configuration | ACC
17-1
338
418
14920
324
7620
650 | ELEA
17-1
3.48
421
19900
25
7620
650 | RAT (
17-1
3.58
1920
26
7620
650
126 | 17-1
3.68
43.3
/4900
7/30
6.30 | 17-1
3.18
423
19.110
26
7630
650 | 17-1
3,88
4)3
19880
7630
650 | 17-1
3.98
423
19880
26
7630
650 | 17-1
4.03
124
19880
26
7630
650 | | | Fuel Hand — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Configuration Flight No. — RUN NO. Firms — Min AS — knots Mittuds — ft Air Terrn — C RPM Ex. Gas Terrn — C Tuel Hand — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Cast Configuration Flight No. — RUN NO. | ACC
17-1
3.38
448
74920
-24
7620
650
123 | ELE/
17-1
3-18
421
19900
25
7620
650
125 | RAT (
17-1
3.58
1920
26
7620
650
126 | 17-1
3.68
43.3
/4900
7/30
6.30 | /7-1
3/8
423
19.8 (0
26
76.50
/2.8 | 17-1
3.88
4)3
7780
7630
650
129 | 17-1
3.38
42.3
19880
26
7630
650
130 | 17-1
4.03
124
19880
26
7630
650 | | | Fuel Hand — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Configuration Flight No. — RUN NO- Firms — Min AS — knots Mittuds — ft Air Terrn — C RPM Ex. Gas Terrn — C Tuel Hand — gal/hr Fuel Flow
— gal/hr Fuel Press — PSI Cast Configuration Flight No. — RUN NO. Cime — Min | ACC
17-1
3.38
448
74920
-24
7620
650
123 | ELE/
ELE/
ELE/
ELE/ | RAT (
17-1
3.58
1920
26
7620
650
126 | 17-1
3.68
43.3
/4900
7/30
6.30 | 17-1
3.18
423
19.110
26
7630
650 | 17-1
3.88
4)3
7780
7630
650
129 | 17-1
3.38
42.3
19880
26
76.30
6.50
130 | /7-1
4:03
1:24
/9880
26
7630
650
/31 | /7= | | Fuel Hand - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No RUN NO- Firms - Min AS - knots Mittude - ft Mr Terron - C RPM Ex. Gas Terron - C Typel Hand - gal/hr Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Flow - FSI Cast Configuration Flight No RUN NO. Cime - Min AS - knots | ACC
17-1
3.38
448
74920
-24
7620
650
123 | ELE/
17-1
3-18
421
/9900
25
7620
650
/25 | 2AT (
17-1
3.58
122
1492
2620
650
126
126
1785 | 17-1
3-68
3-25
19900
2-6
7-3-0
12-7 | /7-1
3/8
423
19.8 (0
26
76.50
/2.8
/7-2
32
2/3 | 17-1
3.88
4)3
7730
650
129 | 17-1
3.38
423
19880
26
7630
650
130 | 17-1
4.03
124
19880
26
7630
650
131 | /7- | | Fuel Hand — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fast Configuration Flight No. — RUN NO- Firms — Min AS — knots Attitude — ft Air Terms—°C RPM Ex. Gas Terms—°C RPM Ex. Gas Terms—°C Tuel Flow — gal/hr Fuel | ACC
17-1
3.38
448
74920
-24
7620
650
123 | ELE/
61-64
17-1
3-48
421
19900
25
7620
650
125
125
125
125
125 | RAT (
17-1
3.58
1920
26
7620
650
126 | 17-1
3.68
43.3
/4900
7/30
6.30 | /7-1
3/8
423
19.8 (0
26
76.50
/2.8 | 17-1
3.88
4)3
7780
7630
650
129 | /7-1
3.38
42.3
/9880
26
7630
6.50
/30
/30
/5.2
7.33
20000 | /7-1
4:03
1:24
/9880
26
7630
650
/31 | /7- | | Fuel Hand — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fast Configuration Flight No. — RUN NO- Firms — Min AS — knots Attitude — ft Air Terms—°C RPM Ex. Gas Terms—°C RPM Ex. Gas Terms—°C Tuel Flow — gal/hr Fuel | ACC
17-1
3.38
448
19920
-24
7620
650
123 | ELE/
61-64
17-1
3-48
421
19900
25
7620
650
125
125
125
125
125 | 2AT (
17-1
3.58
122
1492
2620
650
126
126
1785 | 17-1
3-68
3-25
19900
2-6
7-3-0
12-7 | /7-1
3/8
423
19.8 (0
26
76.50
/2.8
/7-2
32
2/3 | 17-1
3.88
4)3
7730
650
129 | 17-1
3.38
423
19880
26
7630
650
130 | 17-1
4.03
124
19880
26
7630
650
131 | /7- | | Fuel Hand — gal/hr Fuel Flow — gal/hr Fuel Prass — PSI Configuration Flight No. — RUN NO- Firms — Min AS — knots Mittuds — ft Air Terry — C RPM Ex. Gas Terry — C Tuel Flow — gal/hr Fuel Flow — gal/hr Fuel Prass — PSI Cest Configuration Flight No. — RUN No. Cime — Min AS — knots Altitude — ft Air Terry — C | ACC
17-1
3.38
448
19920
-24
7620
650
123
/25
/2580 | ELE/
17-1
3-48
421
19900
25
7620
650
125
125
125
17-2
.03
168
19880 | 2 AT (
17-1
3.58
422
19920
2620
650
126
17-2
11-2
11-8-5
14880 | 17-1
3-68
3-43-5
14900
2-6
7-3-0
12-7
0-1
12-2
1-1
1-2
1-2
1-2
1-2
1-2
1-2
1-2 | 17-1
3.18
423
19.860
26
7630
650
12.8
17-2
.32
2/3
12840
-4 | 17-1
3.88
1230
7630
650
129
17-2
172
172
172
1720
1720 | 17-1
3.38
423
79880
26
7630
650
130
17-2
.52
243
20000
-2 | 17-1
4.03
124
1480
26
7630
650
131 | /.7-
23
7988
-/ | | Fuel Hand — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fight No. — RUN NO- Firms — Min AS — knots Mittuds — ft Air Terry — C Tuel Hand — gal/hr Fuel Flow — gal/hr Fuel Flow — gal/hr Fuel Flow — gal/hr Fuel Flow — gal/hr Fuel Fress — PSI Cast Configuration Flight No. — RUN NO. Cime — Min AS — knots Air Terry — C LPM | ACC
17-1
3.38
448
19920
-24
7620
650
123
/25
/25
/2580
7820 | ELE/
17-1
3-48
421
19900
25
7620
650
125
125
125
127
203
168
128 | 2671
3.58
422
19920
2620
650
126
17.85
19880
77.22 | 0N
17-1
3 68
4 3 6
74 900
2 6
76 50
127
6 70
17-2
171
1860
177,0 | 17-1
3.18
423
19.860
26.50
12.8
17-2
.32
2/3
19840 | 17-1
3.88
4)3
7730
650
129 | /7-1
3.38
423
/9880
26
7630
650
/30
/30
23
293
20000
-2 | 17-1
4.03
124
128
128
7630
650
131 | /7-
-7986
-/
-775 | | Fuel Hand — gal/hr Fuel Flow — gal/hr Fuel Prass — PSI Fuel Prass — PSI Fuel Prass — PSI Fight No. — RUN NO. Fight — Min AS — knots ANT Temp — C Fuel Flow — gal/hr Fuel Flow — gal/hr Fuel Prass — PSI Fuel Flow — gal/hr Fuel Prass — PSI Fuel Frass — PSI Fuel Flow — gal/hr Fuel Frass — PSI PS | ACC
17-1
3.38
448
19920
-24
7620
650
123
/25
/2580 | ELE/
17-1
3-48
421
19900
25
7620
650
125
125
125
17-2
.03
168
19880 | 2 AT (
17-1
3.58
422
19920
2620
650
126
17-2
11-2
11-8-5
14880 | 17-1
3-68
3-43-5
14900
2-6
7-3-0
12-7
0-1
12-2
1-1
1-2
1-2
1-2
1-2
1-2
1-2
1-2 | 17-1
3.18
423
19.860
26
7630
650
12.8
17-2
.32
2/3
12840
-4 | 17-1
3.88
1230
7630
650
129
17-2
172
172
172
1720
1720 | 17-1
3.38
423
79880
26
7630
650
130
17-2
.52
243
20000
-2 | 17-1
4.03
124
1480
26
7630
650
131 | /.7-
23
7988
-/ | | Fuel Flaw - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No RUN NO. Firms - Min AS - knots Mituds - ft Mr Temp - C Le Gas Temp - C Tuel Flow - gal/hr Fuel Fress - PSI Cest Configuration Flight No RUN NO. Cime - Min AS - knots Mituds - ft Mr Temp - C LE Gas Press - UHs | ACC
17-1
3.38
448
74920
-24
7620
650
123
(7-2
(7-2
(7-2)
165
(7-2)
165
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(| ELE/
17-1
3-18
421
/9900
25
7620
650
/25
/7-2
.03
/68
/2880
675 | 2 AT (
17-1
3.58
122
1920
2620
650
126
126
126
126
126
127
1785
19880
1700 | 17-1
3-68
3-68
3-69
1-29
1-29
1-27
1-11
12860
1-5
1-15
1-15
1-15 | /7-1
3/8
423
19.8 (0
26
76.50
/2.8
/2.3
/2.840
77.50
96.5 | 17-1
3.88
4)3
7730
650
129
17-2
172
172
172
172
172
172
172
172
172
17 |
/7-1
3.38
423
/9880
26
7630
650
/30
/30
23
243
20000
-2
270 | 17-1
4.03
124
19880
2630
650
131 | /7-
-284
-7988
-/
-775
/00 | | Fuel Hand — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fuel Press — PSI Fuel Press — PSI Fight No. — RUN NO. Fight No. — RUN NO. Fight No. — BHg Fuel Flow — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fuel Press — PSI Fuel Flow — gal/hr Fuel Flow — Fuel Flow — Gal/hr Fuel Flow — Fuel Flow — Gal/hr Fuel Flow — Gal/hr Fuel Flow — Gal/hr Fuel Flow — Fuel Flow — Fuel Flow — Fuel Flow — Gal/hr Fuel Flow — Flow — Fuel Fu | ACC
17-1
3.38
448
19920
-24
7620
650
123
/25
/25
/2580
7820 | ELE/
17-1
3-48
421
19900
25
7620
650
125
125
125
127
203
168
128 | 2671
3.58
422
19920
2620
650
126
17.85
19880
77.22 | 0N
17-1
3 68
4 3 6
74 900
2 6
76 50
127
6 70
17-2
171
1860
177,0 | 17-1
3.18
423
19.860
26
7630
650
12.8
17-2
.32
2/3
12840
-4 | 17-1
3.88
1230
7630
650
129
17-2
172
172
172
1720
1720 | /7-1
3.38
423
/9880
26
7630
650
/30
/30
23
293
20000
-2 | 17-1
4.03
124
128
128
7630
650
131 | /7-
-7986
-/
-775 | | Fuel Hand - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Cast Configuration Flight No RUN NO. Cime - Min AS - knots Withude - ft Ar Temp - C Le Gas Temp - C Lest Configuration Flight No RUN No. Cime - Min AS - knots Littude - ft Ar Temp - C LEM Cas Temp - C LEM Cas Temp - C LEM Cas Cas Temp - C LEM Cas Cas Press - UHs | ACC
17-1
3.38
448
74920
-24
7620
650
123
(7-2
(7-2
(7-2)
165
(7-2)
165
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(7-2)
(| ELE/
17-1
3-18
421
/9900
25
7620
650
/25
/7-2
.03
/68
/2880
675 | 2 AT (
17-1
3.58
122
1920
2620
650
126
126
126
126
126
127
1785
19880
1700 | 17-1
3-68
3-68
3-69
1-29
1-29
1-27
1-11
12860
1-5
1-15
1-15
1-15 | /7-1
3/8
423
19.8 (0
26
76.50
/2.8
/2.3
/2.840
77.50
96.5 | 17-1
3.88
4)3
7730
650
129
17-2
172
172
172
172
172
172
172
172
172
17 | /7-1
3.38
423
/9880
26
7630
650
/30
/30
23
243
20000
-2
270 | 17-1
4.03
124
19880
2630
650
131 | /7-
-284
-7988
-/
-775
/00 | - A Common Com *** 7 * . . . シャングラン こうかいしゅうこうじゅつ しゅう | TEST 1 | DATA (| CORRE | CTED | FOR I | NSTRU: | MENT | ERROL | ٠. | | |--|---|---|---
--|--|---|--|---|---| | | | F-86F | . USAF | No. 51 | 1-13506 | | | | | | Test | ACC | ELEI | 3971 | ON | State of the latest services and the latest of the latest services and lat | Politicidade de estacione de 200 | arte de la company compa | , | | | Configuration | | CLEA | | and the Landing Control of the Contr | | and firm pulling and | | مدار بالتوافق الاستران والتوافق المتحدد والمدار | | | Flight No RIIN No. | 177-2 | 77.2 | 1772 | 17- | 1 17-7-3 | 17.2 | 1 77-2 | 177 | 17 | | Time - Min | 92 | 92 | 1.03 | 1/3 | 1 23 | 124 | 1.44 | 1,54 | 12. | | IAS - knots | 3015 | 12/4 | 3375 | | 376.5 | 392 | 710 | 428 | 43- | | Altitude - ft | 19880 | 19940 | | 19970 | | | | 20020 | | | Air Temp - C | 3 | 5 | 177 | a | 12200 | 7770 | 13000 | 70076 | 200 | | RPM | 7760 | 7760 | 7760 | 7726 | 7780 | 7790 | 7790 | 7800 | 780 | | Ex. Gas Temp - C | 1000 | | the second second | | 990 | 990 | 990 | 975 | 96 | | Ex. Gas Press - NH | | 12000 | 17000 | 770 | 1.7.0 | 170 | 7.70 | 7.63 | | | Cara Man Prons - "Fi | 165 | 167 | 169 | 17-77 | 173 | 175 | 1 7 7 | 179 | 18 | | Fuel Used - gal | 1/69 | 16 | 7.5 | 1/// | 1/2 | 1 73 | | <u> </u> | | | Fuel Flow - gal/hr | | | | <u> </u> | | | ļ | | | | Eucl ress PSI | <u> </u> | <u> </u> | 1 | <u> </u> | L | <u> </u> | L | <u> </u> | L | | | | | | | | | | | | | | | , | - A - | -7-3-7 | | | | | | | Test | 176 | -54 | BAT | 10N | | ····· | · | ور سندومه بروم سودي | | | Configuration | | | <u> </u> | T | | | | , a x | | | Flight No - RUN No. | | 17-2 | 17-2 | 17-2 | | 11-3 | 17-3 | 11-3 | 12- | | Time - Min | 1.73 | 1.85 | 1.25 | 2.05 | | 0 | ,09 | 1/2 | 125 | | AS=- knots | 1436 | 7.38 | 439 | 938 | | 156 | 158 | 162 | 16 | | Altitude - ft | 112280 | 177700 | 19960 | 19980 | <u> </u> | 29750 | 23760 | 29780 | 2986 | | Air Temp-C | 126 | 127 | 27 | 28 | | -28 | -20 | -28 | -26 | | RPM " | 7800 | 7800 | 7800 | | | 7730 | 7800 | 78/0 | 782 | | Ex. Gas Temp-°C | 965 | 965 | 955 | 955 | | 615 | 600 | 625 | 64 | | Ex. Gas Press - NHo | | | | | | | | | | | Fuel Used - gal | 784 | 186 | 188 | 190 | | 226 | 226 | 227 | 228 | | | | | | | | | | | - حادم | | | 1 | I | | | } | ł | 1 | 1 | | | Fuel Plow - gal/kr | | | | | | | | | | | Fuel Flow - gal/hr
Fuel Press - PSI | | ELET | 36776 | ΣŃ. | | | | | | | Fuel Flow - gal/hr Fuel Press - PSI Fest Configuration | | | |)
//2-3 | 17-3 | /7-3 | /7-3 | /2-3 | 77- | | Fuel Flow - gal/hr Fuel Press - PSI Fest Configuration Flight No RUN NO. | | LAA | | 17-3 | The second control of | /7-3 | 17-3 | /2-3 | 17- | | Fuel Flow - gal/hr Fuel Press - PSI Fest Configuration | 17-3 | LAA | レ
12-3 | | /7-3
.80
/97 | /Z-3
202 | 17-3 | 411 | 17- | | Fuel Flow - gal/hr Fuel Press - PSI Fest Configuration Flight No - RUN No. Cime - Min As - knots | /7-3
-39
/240 | 1-84
12-3
149
1815 | 12-3
-59
1865 | /7-3
/70
/89 | 197 | 202 | | 2/4/6 | | | Fuel Flow - gal/hr Fuel Press - DSI Fest Configuration Flight No - RUN NO. Cime - Min AS - knots Attitude - ft | /7-3
-39
/240
29800 | 1-84
12-3
149
1815 | 12-3
-39
1865
29740 | /7-3
/89
23740 | 197 | /7-3
202
202
39260 | 29750 | 2/4/6 | 17-
116
216
297- | | Fuel Flow - gal/hr Fuel Press - PSI Fest Configuration Flight No - RUN No. Cime - Min AS - knots Mittude - ft Air Term - C | /7-3
-39
/740
29800
-27 | 1-84
12-3
.49
1815
29760
- 27 | /7-3
-59
/865
29740
-27 | /7-3
/89
23740 | .80
197
19760
-26 |
202
19760
-26 | 29750
-26 | 1.11
2.14.6
29740 | 2971
1 | | Fuel Flow - gal/hr Fuel Press - PSI Fest Configuration Flight No - RUN NO. Cime - Min AS - knots Mittude - ft Air Temp - C | /7-3
/39
/740
23800
-27
78/0 | 1-84
12-3
.49
1815
29760
- 27 | /7-3
-59
/865
29740
-27 | 77-3
770
789
23740
-27 | .80
197
19760
-26 | 202
19760
-26 | 29750
-26 | 1,11
2 /4 /6
29740
-25 | 2979
-12
773 | | Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No - RUN NO. Cime - Min AS - knots Mitings - ft Air Tamp - C. IPM Tr. Cas Tamp - C. | /7-3
-39
/740
29800
-27 | 1-84
12-3
.49
1815
29760
- 27 | /7-3
-59
/865
29740
-27 | 77-3
770
789
23740
-27 | .80
197
19760
-26 | 202
19760
-26 | 29750
-26 | 1,11
2 /4 /6
29740
-25 | 2971
1 | | Fuel Flow - gal/kr Fuel Press - PSI Fast Configuration Flight No - RUN NO. Cime - Min AS - knots Mitings - ft Air Temp - C IPM Cr. Cas Temp - C Ex. Cas Press - SHo | /7-3
/740
/740
29800
-27
78/0 | 1-84
12-3
19
1815
29760
-27
7810 | 17-3
139
1865
2974
-27
1810 | /7-3
/89
/89
29740
-27
7780 | .80
197
29760
-26
7770 | 202
19760
-26
7740 | 29750
-26
7730 | 1.11
2.14.6
297.40
-25
7730 | 2979
773
650 | | Fuel Flow - gal/kr Fuel Press - PSI Fast Configuration Flight No - RUN NO. Cime - Min AS - knots Mitings - ft Air Temp - C IPM Cr. Cas Temp - C Lx. Cas Press - SHg Fuel Used - gal | /7-3
/39
/740
23800
-27
78/0 | 1-84
12-3
.49
1815
29760
- 27 | /7-3
-59
/865
29740
-27 | 77-3
770
789
23740
-27 | .80
197
19760
-26 | 202
19760
-26 | 29750
-26
7730 | 1,11
2 /4 /6
29740
-25 | 2979
773
650 | | Fuel Flow - gal/kr Fuel Press - PSI Fast Configuration Flight No - RUN NO. Cime - Min AS - knots Mititude - ft Air Temp - C. RPM Fx. Cas. Temp - C. Fx. Cas. Press - SHg Fuel Flow - gal/hr | /7-3
/740
/740
29800
-27
78/0 | 1-84
12-3
19
1815
29760
-27
7810 | 17-3
139
1865
2974
-27
1810 | /7-3
/89
/89
29740
-27
7780 | .80
197
29760
-26
7770 | 202
19760
-26
7740 | 29750
-26
7730 | 1.11
2.14.6
297.40
-25
7730 | 2979
773
650 | | Fuel Flow - gal/kr Fuel Press - PSI Fast Configuration Flight No - RUN NO. Cime - Min AS - knots Mitings - ft Air Temp - C IPM Cr. Cas Temp - C Lx. Cas Press - SHg Fuel Used - gal | /7-3
/740
/740
29800
-27
78/0 | 1-84
12-3
19
1815
29760
-27
7810 | 17-3
139
1865
2974
-27
1810 | /7-3
/89
/89
29740
-27
7780 | .80
197
29760
-26
7770 | 202
19760
-26
7740 | 29750
-26
7730 | 1.11
2.14.6
297.40
-25
7730 | 2979
773
650 | | Fuel Flow - gal/kr Fuel Press - PSI Fast Configuration Flight No - RUN NO. Cime - Min AS - knots Mititude - ft Air Temp - C. RPM Fx. Cas. Temp - C. Fx. Cas. Press - SHg Fuel Flow - gal/hr | /7-3
/740
/740
29800
-27
78/0 | 1-84
12-3
19
1815
29760
-27
7810 | 17-3
139
1865
2974
-27
1810 | /7-3
/89
/89
29740
-27
7780 | .80
197
29760
-26
7770 | 202
19760
-26
7740 | 29750
-26
7730 | 1.11
2.14.6
297.40
-25
7730 | 2979
773
650 | | Fuel Flow - gal/kr Fuel Press - PSI Configuration Flight No - RUN NO. Cime - Min AS - knots Mittude - ft Air Temp - C RPM Cx. Cas Press - Fig Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Press - PSI | /7-3
/7-40
/7-40
29800
-2-7
78/0
650 | 1-84
12-3
-49
1815
29760
-27
7810
22.9 | 17-3
139
1865
29740
-27
1810 | 17-3
170
189
20140
-27
1780 | .80
197
29760
-26
7770 | 202
19760
-26
7740 | 29750
-26
7730 | 1.11
2.14.6
297.40
-25
7730 | 2979
-13 | | Fuel Flow - gal/kr Fuel Press - PSI Configuration Flight No - RUN NO. Cime - Min AS - knots Mittude - ft Air Temp - C RPM Tx. Cas Temp - C Fx. Cas Press - FHg Fuel Flow - gal/hr Fuel Press - FSI Cast | 77-3
.39
/740
29800
-2-7
7810
650 | - 54
12-3
.49
1815
29760
- 27
7810
229 | 17-3
-39
-39
-29740
-27
-27
-2810
230 | 17-3
170
189
20140
-27
1780 | .80
197
29760
-26
7770 | 202
19760
-26
7740 | 29750
-26
7730 | 1.11
2.14.6
297.40
-25
7730 | 2979
773
650 | | Fuel Flow - gal/kr Fuel Press - PSI Fast Configuration Flight No - RUN NO. Flight - Min AS - knots Mittude - ft Air Temp - C RM Fx. Cas. Temp - C Fx. Cas. Press - FHg Fuel Flow - gal/hr Fuel Press - FSI Cas. Cas. Cas. Cas. Cas. Cas. Cas. Cas. | 77-3
.39
/740
29800
-2-7
7810
650 | 18/5
18/5
29760
-27
78/0
229 | 77-3
-39
-39740
-27
-27
-2810
230 | 17-3
170
189
20140
-27
1780 | .80
197
29760
-26
7770 | 202
19760
-26
7740 | 29750
-26
7730 | 1.11
2.14.6
297.40
-25
7730 | 2979
773
650 | | Fuel Flow - gal/hr Fuel Press - PSI Fest Configuration Flight No RUN NO. Firms - Min AS - knots Mitude - ft Mr Temp - C IPM Tx Cas Press - Fig Fuel Flow - gal/hr Fuel Press - PSI Cast Configuration Flight No RUN No. | 77-3
.39
/740
29800
-2-7
7810
650 | - 54
12-3
.49
1815
29760
- 27
7810
229 | 77-3
-39
-39
-29740
-27
-28/0
230 | 231
27-3
237-60
237-60
231 | .80
197
29760
-26
7770 | 202
19760
-26
7740 | 29750
-26
7730 | 1.11
2.14.6
297.40
-25
7730 | 2974 | | Fuel Flow - gal/kr Fuel Press - PSI Fast Configuration Flight No RUN NO. Firms - Min AS - knots Mittude - ft Mr Temp - C IPM Fr. Gas Temp - C Lx. Gas Press - Flig Fuel Flow - gal/hr Fuel Press - PSI Cast Configuration Hight No RUN No. Sime - Min | 77-3
1740
29800
-2-7
7810
650
229 | 1.2-3
1.49
1.61.5
29760
- 27
7810
239 | 77-3
-39
-29740
-27
-27
-2810
230 | 17-3
170
20740
-27
2780
231 | 18°
197
19760
-26
7700
-231 | 202
19760
-26
2740
-232 | 29750
-26
7730 | 1.11
2.14.6
297.40
-25
7730 | 2974
-1.
273
636
2.3
17-
2.0 | | Fuel Flow - gal/hr Fuel Press - PSI Fest Configuration Flight No RUN NO. Firms - Min AS - knots Mitude - ft Mix Temp - C IPM Ex. Gas Temp - C Ix. Gas Press - Fig Fuel Flow - gal/hr Fuel Press - PSI Cast Configuration Flight No RUN No. Ima - Min AS - knots | 77-3
1740
23800
-27
7810
650
229 | 1.2-3
1.49
1.61.5
29760
-27
7.810
23.9
ELE
1.7-3
1.31
1.33.5 | 77-3
-39
-29740
-27
-27
-2810
230 | 17-3
170
170
23740
-27
1780
231 | 137
19760
-26
270
231
17-3
1.61
243 | 203
29760
-26
2740
232
/7-3
/73
249 | 29750
-26
7730
233
 | 17-3
1.92
26/ | 2974
-1.
-273
-650
-231
 | | Fuel Flow - gal/hr Fuel Press - PSI Lest Configuration Flight No RUN NO. Cime - Min AS - knots Mittude - ft Air Temp - C IPM Lx. Gas Temp - C Lx. Gas Press - FHg Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Last Configuration Light No RUN No. Lime - Min AS - knots Lititude - ft | 77-3
1740
23800
-27
7810
650
229 | 1.2-3
1.8/5
29760
-27
1810
239
239
17-3
17-3
1735
29800 | 77-3
-39
-29740
-27
-27
-27
-27
230
230
23800 | 17-3
-27
1780
-27
1780
231
231
23800 | 17-3
19760
2770
2770
231 | 17-3
19740
17-3
17-3
17-3
17-3
249
29740 | 29750
-26
7730
233
 | 17146
29740
-25
7730
233
17-3
192
261
29740 | 2974
-1.
-273
-650
-231
 | | Fuel Flow - gal/hr Fuel Press - PSI Fuel Press - PSI Finel Press - PSI Fine - Min AS - knots Attude - ft Att Temp - C IPM Fx. Gas Temp - C Fy. Gas Press - FHg Fyel Flow - gal/hr Fyel Flow - gal/hr Fyel Press - PSI Fyel Press - PSI Fyel Press - FSI Fyel Press - FSI Fyel Figuration Fight No RUN No. Fyel Figuration Fight No RUN No. Fyel Figuration Fyel Figuration Fyel Fyel Fyel Fyel Fyel Figuration Fyel | A C C 17-3
1740
23800
-27
7810
650
229
17-3
121
219.5
23710
-24 | 1.2-3
1.67.5
29760
-27
1810
1239
17-3
1735
29800
-24 | 77-3
-39
-29740
-27
-27
-28/0
23800
-23 | 17-3
-27
1780
-27
1780
231
231
236
23800
-22 | 17-3
19760
2770
231
231
243
29760 | 17-3
19740
17-3
17-3
17-3
29740
29740 | 29750
-26
7730
233
-253
-255
19710
-20 | 17-3
19740
-25
773e
233
192
261
29740
-20 | 2974
-1.
273
63°
2.3°
2.0
2.6
2.974
-19 | | Fuel Flow - gal/hr Fuel Press - PSI Fest Configuration Flight No RUN NO. Firms - Min AS - knots Mitude - ft Mix Temp - C IX Cas Press - Fig Fuel Flow - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Cast Configuration Flight No RUN No. Ima - Min AS - knots Mitude - ft Mix Temp - C PM | A C C 17-3
1740
23800
23800
-27
7810
650
229
17-3
121
2195
23910
-24
7730 | 1.2-3
1.67.5
29760
-27
1810
1239
17-3
1735
29800
-24 | 77-3
-39
-29740
-27
-27
-27
-27
230
230
23800 | 17-3
-27
1780
-27
1780
231
231
236
23800
-22 | 17-3
19760
2770
2770
231 | 17-3
19740
17-3
17-3
17-3
17-3
249
29740 | 29750
-26
7730
233
 | 17146
29740
-25
7730
233
17-3
192
261
29740 | 2974
-1.
273
636
2.3
2.6
2.6
2.976
2.976
2.79 | | Fuel Flow - gal/hr
Fuel Press - PSI Lest Configuration Flight No RUN NO. Firms - Min AS - knots Attitude - ft Air Temp - C The Cas Temp - C The Press - SHg Fuel Flow - gal/hr Fuel Press - PSI Cast Configuration Flight No RUN No. Lime - Min AS - knots Lititude - ft AS Temp - C LYM LYM LYM LYM LYM LYM LYM LY | A C C 17-3
1740
23800
-27
7810
650
229
17-3
121
219.5
23710
-24 | 1.2-3
1.67.5
29760
-27
1810
1239
17-3
1735
29800
-24 | 77-3
-39
-29740
-27
-27
-28/0
23800
-23 | 17-3
-27
1780
-27
1780
231
231
236
23800
-22 | 17-3
19760
2770
231
231
243
29760 | 17-3
19740
17-3
17-3
17-3
29740
29740 | 29750
-26
7730
233
-253
-255
19710
-20 | 17-3
19740
-25
773e
233
192
261
29740
-20 | 2974
-1.
273
636
2.3
2.6
2.6
2.976
2.976
2.79 | | Fuel Flow - gal/hr Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Press - Min AS - knots Attrace - ft Ar Temp - C Fuel Press - PHg Fuel Press - PSI | A C C
17-3
1740
23800
23800
17-17
250
229
17-3
121
2195
239710
214
2730
650 | ELE
173.39
181.5
29760
29760
23.9
17.3
17.3
173.5
29800
214
7720 | 77-3
-39
-29740
-27
-27
-27
-290
230
230
230
230
230
230
230
230
230
23 | 17-3
-27
1780
-27
1780
231
231
23800
-22
7720 | 17-3
19760
-26
7770
231
243
29760
-12
2720 | 17-3
19740
17-3
17-3
29740
29740
29740 | 29750
-26
7730
253
-253
-255
19720
-20
7720 | 17-3
19740
-25
2730
233
261
29740
-20
7720 | 2974
-1.
-2.3
636
2.3
2.0
-2.6
2.976
-19
272
6.5 | | Fuel Flow - gal/kr Fuel Press - PSI Lest Configuration Flight No RUN NO. Firms - Min AS - knots Attrace - ft Ar Temp - C RM L. Gas Temp - C Track - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Lest Configuration Flight No RUN No. Lime - Min AS - knots Littude - ft As Temp - C Lest Gas Fress - Thg Luck | A C C 17-3
1740
23800
23800
-27
7810
650
229
17-3
121
2195
23910
-24
7730 | 1.2-3
1.67.5
29760
-27
1810
1239
17-3
1735
29800
-24 | 77-3
-39
-29740
-27
-27
-28/0
23800
-23 | 17-3
-27
1780
-27
1780
231
231
236
23800
-22 | 17-3
19760
2770
231
231
243
29760 | 17-3
19740
17-3
17-3
17-3
29740
29740 | 29750
-26
7730
233
-253
-255
19710
-20 | 17-3
19740
-25
773e
233
192
261
29740
-20 | 2974
-1.
273
636
2.3
2.6
2.6
2.976
2.976
2.79 | | Fuel Flow - gal/kr Fuel Press - PSI Lest Configuration Flight No RUN NO. Cime - Min AS - knots Attrace - ft Ar Temp - C R. Ges Temp - C R. Ges Press - SHg Fuel Flow - gal/hr Fuel Press - PSI Cast Configuration Light No RUN No. Cime - Min AS - knots Littude - ft Ar Temp - C R. Ges Press - SHg Luck Flow - gal/hr Luck Cast Temp - C R. Ges Press - SHg Luck Flow - gal/hr | A C C
17-3
1740
23800
23800
17-17
250
229
17-3
121
2195
239710
214
2730
650 | ELE
173.39
181.5
29760
29760
23.9
17.3
17.3
173.5
29800
214
7720 | 77-3
-39
-29740
-27
-27
-27
-290
230
230
230
230
230
230
230
230
230
23 | 17-3
-27
1780
-27
1780
231
231
23800
-22
7720 | 17-3
19760
-26
7770
231
243
29760
-12
2720 | 17-3
19740
17-3
17-3
29740
29740
29740 | 29750
-26
7730
253
-253
-255
19720
-20
7720 | 17-3
19740
-25
2730
233
261
29740
-20
7720 | 2974
-1.
-2.3
-2.3
-2.0
-2.6
-2.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1 | | Fuel Flow - gal/kr Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Flow - Gas Temp - C Fuel Flow - gal/kr Fuel Flow - gal/kr Fuel Press - PSI Fuel Press - PSI Fuel Flow - gal/kr Fress - PSI Fuel Flow - FII Fuel Fress - FII Fuel Flow - Gas F | A C C
17-3
1740
23800
23800
17-17
250
229
17-3
121
2195
239710
214
2730
650 | ELE
173.39
181.5
29760
29760
23.9
17.3
17.3
173.5
29800
214
7720 | 77-3
-39
-29740
-27
-27
-27
-290
230
230
230
230
230
230
230
230
230
23 | 17-3
-27
1780
-27
1780
231
231
23800
-22
7720 | 17-3
19760
-26
7770
231
243
29760
-12
2720 | 17-3
19740
17-3
17-3
29740
29740
29740 | 29750
-26
7730
253
-253
-255
19720
-20
7720 | 17-3
19740
-25
2730
233
261
29740
-20
7720 | 2974
-1.
-273
636
2.3
2.0
-2.6
2.976
-19
272
6.5 | | Fuel Flow - gal/kr Fuel Press - PSI Cost Configuration Flight No RUN NO. Cime - Min AS - knots AS - Fress - SHg Fuel Flow - gal/hr Fuel Press - PSI Cast Configuration Light No RUN No. Cime - Min AS - knots K | A C C
17-3
1740
23800
23800
17-17
250
229
17-3
121
2195
239710
214
2730
650 | ELE
173.39
181.5
29760
29760
23.9
17.3
17.3
173.5
29800
214
7720 | 77-3
-39
-29740
-27
-27
-27
-290
230
230
230
230
230
230
230
230
230
23 | 17-3
-27
1780
-27
1780
231
231
23800
-22
7720 | 17-3
19760
-26
7770
231
243
29760
-12
2720 | 17-3
19740
17-3
17-3
29740
29740
29740 | 29750
-26
7730
253
-253
-255
19720
-20
7720 | 17-3
19740
-25
2730
233
261
29740
-20
7720 | 2974
-1.
-2.3
-2.3
-2.0
-2.6
-2.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1 | | 3. A.O.L. L | INT A | | | FOR I | | | ERROL | ₹, | | |---|--|--|---
--|---|---|--|--|---| | and the second second section of the second section is a second section to the second second section to the section to the second section to the | 4 | F-66F | USAE | No. | <u>L-13506</u> | | legetistelligitessee dissert to 1 a tots was bestell | mandany-kiny mpapaba | | | Test | 1225. | C L 41 | $\mathcal{L}B\Omega \mathcal{I}$ | 10N | | tomounteper a contamina | or thy page and an analysis of the highest department of the highest department of the highest department of the | 0.0 191 000 PM 100 100 10 | | | Configuration | - | CLB | */ | بيريونون داد درونونون بالتي | entropological districtions and | minima edy) (paperily) | Salt Marks Constitutions | | e marinistra | | Fligh' No RUN NO. | 12-3. | 4 | | and the sale of th | | | MARINER AND A STATE OF THE STAT | <u> </u> | - LL | | Time Min | 12.12. | 13 23 | The state | Rita | 1200 | 2.62 | 212 | 2.79 | 2.8 | | IAS knots | 2. Zd. | 228 | | 2885 | 294.5 | 1301.5 | 29760 | 311.5 | 13/5 | | Altitude - ft | 2.2280 | 2.9760 | 2.9760 | 29760 | | 122760 | | 29740 | 3972 | | Air Temp - °C | -18 | 12 | -/- | 45 | -29 | -13 | -/2 | -11 | 1-4 | | RDM. | 7770 | 4 | | | | ************************ | | | 7,73 | | Ex. Cas Temp - C | 650 | | | | | 2 - Control | The street and the street and | | 65 | | Ex. Gas Press - "He | - | + | - | 243 | -5-73- | | | 296 | 24 | | Euc Used - gal | 271. | 243 | 242 | 442 | <u> </u> | 2.45 | 246 | <u> </u> | Z7. | | Fual Flow - gal/hr | | | | | ļ | | ļ <u></u> | ļ | | | Funl Press - PSI | L | | L | | L | I | | L | ↓ | | | | | | | | | | | | | ************************************** | 120 5 5 | FLEI | 245 77 | 01/ | | | | | | | Configuration | | CLEA | | <u> Y</u> | | . // | | | | | Configuration Flight No RVN No. | 17-3 | | | | <u> </u> | | | | 17- | | Time - Min | 3,20 | 7 | 3.20 | 3.30 | 3,35 | 3,45 | 3.55 | 3.66 | 15/3 | | Ina - Min
IAS . knots | 322 | 326 | 332 | 3336 | 340.5 | | 322 | 350 | 34 | | | 29720 | | 29760 | | | | 29700 | | | | Altitude – ft | -9 | 8 | 41160 | 79470 | K2 /20 | 12000 | 27/00 | 2700 | 142/3 | | Air Temp -°C | | | 7710 | 77/0 | 77/0 | 777 | 177 | 7 | 1 - 2 | | NPM . | 7720 | 7720 | 110 | 1110 | 1//0 | 7710 | | 390 | 667 | | Cx. Gas Temp-°C | 650 | | | | | | 650 | 240 | 36 | | Cx. Gas Press - Hig | | | | | <u> </u> | | <u> </u> | | - | | Fuel Used - gal | 298 | 2 48 | 749 | 250 | 2.5/ | 751 | 252 | 255 | 122 | | Fuel Flow - gai/hr
Fuel Press - PSI | | | | | | | | | | | Fuel Flow - gal/hr
Fuel Press - PSi
Test | | ELE | | ON | | | | | | | Fuel Flow - gal/hr Fuel Press - PSi Fest Configuration | | ELEA | | ON | | | | | | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. | 17-1 | K-LEA | | ON. | | | | | 17-4 | | Fuel Flow - gal/hr Fuel Press - PSi Configuration Flight No RUN No. Time - Min | 17-1 | ,05 | N .15 | ,2 6 | ,36 | . 36 | 256 | 1.66 | 127 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Firms - Min AS - knots | 17-1 | ,03
155 | N
15
163 | 173 | 185.5 | 196 | 206 | 2/6,5 | 22 | | Fuel Flow — gal/hr Fuel Press — PSI Configuration Flight No. — RUN No. Time — Min AS - knots Altitude — ft | 17-1
0
159
29800 | ,05 | N
15
163 | .26
173
21800 | 185,5 | 196 | | 29780 | 2 2 1
2 2 6
2980 | | Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No RUN No. Time - Min AS - knots Altitude - ft Air Temp - C | 17-1
0
159
29800
-29 | ,03
155
29800
-29 | N
163
29800
-28 | .26
173
27800
-28 | 185,5
29800
-28 | 196
29780
-28 | 206
29760
-27 | 216,5
29780
-26 | 22
22
2980
-2 | | Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No RUN No. Time - Min AS - knots Altitude - ft Air Temp - C | 17-1
0
159
29800
-29 | ,03
,55
29800
-29
7800 | N
163
29800
-28
7630 | 173
27800
-28
7600 | 185,5
29800
-28
7550 | 196
29780
-28
7350 | 206
29760
-27
2550 | 216,5
29780
-26
7550 | 226
2980
-2
756 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Time - Min AS - knots Altitude - ft Air Tamp - C IPM Ex. Gas Tamp - C | 17-1
0
159
29800
-29 | ,03
155
29800
-29 | N
163
29800
-28
7630 | .26
173
27800
-28 | 185,5
29800
-28
7550 | 196
29780
-28 | 206
29760
-27 | 216,5
29780
-26 | 226
2980
-2
756 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Time - Min AS - knots Altituds ft Air Tamp -°C LPM Ex. Gas Tamp -°C | 12-1
0
15-9
29800
-29
7680
590 | ,03
155
29800
-29
7800
650 | N
163
29800
-28
7650
860 | 173
27800
-28
7600
890 | 185.5
29800
-18
7550
925 | 196
29780
-28
7350
935 | 2760
-27
-27
2530
245 | 216,5
29780
-26
7550
995 | 7980
-2:
756
965 | | Fuel Flow - gal/hr Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Press - RUN No. Flight No RUN No. Fuel Flow - Flight No Run Press - Run Fuel Hand - gal | 17-1
0
159
29800
-29 | ,03
,55
29800
-29
7800 | N
163
29800
-28
7630 | 173
27800
-28
7600 | 185,5
29800
-28
7550 | 196
29780
-28
7350 | 206
29760
-27
2550 | 216,5
29780
-26
7550 | 22
2980
-2
756
965 | | Fuel Flow - gal/hr Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Press -
PSI Fuel Flow - Gal/hr Fuel Flow - gal/hr | 12-1
0
15-9
29800
-29
7680
590 | ,03
155
29800
-29
7800
650 | N
163
29800
-28
7650
860 | 173
27800
-28
7600
890 | 185.5
29800
-18
7550
925 | 196
29780
-28
7350
935 | 2760
-27
-27
2530
245 | 216,5
29780
-26
7550
995 | 22
2280
2980
-2
756
965 | | Fuel Flow - gal/hr Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Press - RUN No. Flight No RUN No. Fuel Flow - Flight No Run Press - Run Fuel Hand - gal | 12-1
0
15-9
29800
-29
7680
590 | ,03
155
29800
-29
7800
650 | N
163
29800
-28
7650
860 | 173
27800
-28
7600
890 | 185.5
29800
-18
7550
925 | 196
29780
-28
7350
935 | 2760
-27
-27
2530
245 | 216,5
29780
-26
7550
995 | 22
2980
-2
756
965 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. | 17.1
0
15.9
29.800
-29
7680
590 | 155
29800
-29
7800
650 | N
163
29800
-28
7630
860 | 173
27800
-28
7600
890 | 185.5
29800
-18
7550
925 | 196
29780
-28
7350
935 | 2760
-27
-27
2530
245 | 216,5
29780
-26
7550
995 | 22
2280
2980
-2
756
965 | | Fuel Flow - gal/hr Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Flow - Gal/hr Fuel Flow - gal/hr | 17.1
0
15.9
29.800
-29
7680
590 | 280
280
280
290
280
280 | 1.15
163
29800
-28
7130
860
281 | 173
27800
-28
7600
890 | 1855
29800
-18
7550
925 | 196
29780
-28
7350
935 | 2760
-27
-27
2530
245 | 216,5
29780
-26
7550
995 | 22
2280
2980
-2
756
965 | | Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No RUN No. Firme - Min AS - knots Altitude - ft Air Temp - C RPM Fx. Gas Temp - C Two Gas Press - SHg Fuel Hand - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration | 17.1
0
15.9
29.800
-29
7680
590 | 155
29800
-29
7800
650 | 1.15
163
29800
-28
7130
860
281 | 173
27800
-28
7600
890 | 1855
29800
-18
7550
925 | 196
29780
-28
7350
935 | 2760
-27
-27
2530
245 | 216,5
29780
-26
7550
995 | 22
2280
2980
-2
756
965 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Flight No RUN No. AS: knots Altitude - ft Air Temp - C RPM Ex. Gas Temp - C Tx. Gas Press - SHg Fuel Heed - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Fest Configuration Flight No RUN No. | 17.1
0
15.9
29.800
-29
7680
590 | 280
280
280
290
280
280 | 1.15
163
29800
-28
7130
860
281 | 173
27800
-28
7600
890 | 1855
29800
-18
7550
925 | 196
29780
-28
7350
935 | 2760
-27
-27
2530
245 | 216,5
29780
-26
7550
995 | 2 2 3 2 3 2 5 3 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | | Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No RUN No. Flight No RUN No. Flight No RUN No. As - knots Altitude - ft Air Temp - C RPM Fx. Gas Temp - C Tx. Gas Press - SHg Fuel Heed - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Fost Configuration Flight No RUN No. Fime - Min | 17-1
0
159
29800
7680
590
279 | 155
29800
7800
650
280 | 163
29800
-28
7690
860
281 | 173
27800
-28
7600
890
282 | 1855
29 100
-18
-1550
925
284 | 196
29780
-28
7350
935
285 | 200
29760
-27
2530
245
286 | 2/6,5
29780
-26
7550
975
287 | 2 2 3 2 3 2 5 3 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | | Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration Flight No RUN No. Firme - Min AS - knots Altitude - ft Air Temp - C RPM Fx. Gas Temp - C Two Gas Press - SHg Fuel Hand - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Fast Configuration | 17-1
0
159
29800
7680
590
279
279 | 155
29800
7800
650
280 | 1.07
2.64 | 173
27800
-28
7600
890
282 | 1855
29100
-18
-1550
925
284
 | 196
29780
-28
7350
935
285
 | 206
29760
-27
2530
245
286 | 2/6/5
29780
-26
7550
975
287 | 12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Firms - Min AS - knots Altitude - ft Air Temp - C RPM Ex. Gas Temp - C Typel Flow - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Firms - Min AS - knots Altitude - ft | 17-1
0
159
29800
7680
590
279
279
17-1
239
19820 | - LEA
- 155
29800
- 29
- 7800
- 650
- 280
- 280
- 280
- 291
- 252
- 29800 | 163
29800
-28
7690
860
281 | 173
21800
-28
7600
890
282
0N | 1855
29800
-18
7550
925
284
-117
2885
29840 | 196
29780
-28
7350
935
285
285
3015
29860 | 206
29760
-27
2530
245
286
3765
29820 | 2/6/5
29780
-26
7550
975
287 | 17-
280
280
280
280
280
280
343
2986 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Firms - Min AS - knots Altitude - ft Air Temp - C RPM Ex. Gas Temp - C Typel Flow - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Firms - Min AS - knots Altitude - ft | 17-1
0
159
29800
7680
590
279
279 | 29800
29800
29800
280
280
280
280
252
29800 | 163
29800
-28
7690
281
281
29280
-20 | 173
27800
-28
7600
890
282 | 1855
29100
-18
7550
925
284
-137
2885
29840 | 196
29780
-28
7350
935
285
285
-137
3015
29860 | 206
29760
-27
2530
245
286
-197
29820 | 2/6/5
29780
-26
7550
975
287
287
-330
29820
-// | 17-
280
280
280
280
280
280
280
288
2986 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Fime - Min AS - knots Altitude - ft Air Temp - C TPM Ex. Gas Temp - C Tuel Flow - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Cost Configuration Flight No RUN No. Fime - Min AS - knots Altitude - ft Air Temp - C IPM | 17-1
0
159
29800
-29
7680
279
279
279
239
239
239
239
239 | -252
29800
-29
7800
650
280
280
-252
29800 | 1.07
29.800
29.800
28.60
28.7
28.7
28.7
29.780
76.30 | 173
21800
-28
7600
890
282
0N
-192
7660 | 1855
29100
-18
7550
925
284
-18
7690 | 196
29780
-28
7350
935
285
285
-137
3015
29860
-720 | 206
29760
-27
2530
245
286
-197
-19820 | 2/6,5
29780
-26
7550
975
287
287
330
29820
-// | 17-
17-
17-
17-
17-
17-
17-
17-
17-
17- | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Fime - Min AS - knots Altitude - ft Air Temp - C TPM Ex. Gas Temp - C Tuel Flow - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Cost Configuration Flight No RUN No. Fime - Min AS - knots Altitude - ft Air Temp - C IPM | 17-1
0
159
29800
7680
590
279
279
117-1
181
239
19820
-24 | 29800
29800
29800
280
280
280
280
252
29800 | 163
29800
-28
7690
281
281
29280
-20 | 173
21800
7200
890
282
0N | 1855
29100
-18
7550
925
284
-137
2885
29840 | 196
29780
-28
7350
935
285
285
-137
3015
29860 | 206
29760
-27
2530
245
286
-197
29820 | 2/6,5
29780
-26
7550
975
287
287
330
29820
-// | 17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Fime - Min AS - knots Altitude - ft Air Temp - C TPM Ex. Gas Temp - C Tuel Haed - gal/hr Fuel Flow - gal/hr Fuel Press - PSI Cest Configuration Flight No RUN No. Fime - Min AS - knots Atitude - ft Air Temp - C Ititude - ft Air Temp - C IPM Ex. Gas Temp - C | 17-1
0
159
29800
7680
590
279
279
279
239
239
239
29820
7580
965 | -252
29800
-29800
-290
-290
-252
29800
-22
7600
965 | 163
29800
-28
7690
860
281
-20
29280
-20
7630
965 | 173
21800
-28
7600
890
282
0N
-19
7660
390 | 1.17
2885
284
2886
2886
2886
2886
2886
2886
2886 | 196
29780
-28
7350
935
285
285
-137
3015
29860
-720
7720 | 206
29760
-27
2530
245
286
2765
29820
-14
2720
990 | 2/6,5
29780
-26
7550
975
287
287
-151
330
29820
-1/
7730
390 | 12-1
2980
2980
265
265
286
2980
2980
2980
2980 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Fime - Min AS - knots Altitude - ft Air Temp - C Type Type - St Cas Temp - C Type - St Cas Temp - C Type - St Cas Temp - C Type - St Configuration Flight No RUN No. Fime - Min AS - knots Atitude - ft Air Temp - C Type - C Type - C Type - St Type - C Type - C Type - C Type - Type - C Type - | 17-1
0
159
29800
-29
7680
279
279
279
239
239
239
239
239 | -252
29800
-29
7800
650
280
280
-252
29800 | 1.07
29.800
29.800
28.60
28.7
28.7
28.7
29.780
76.30 | 173
21800
-28
7600
890
282
0N
-192
7660 | 1855
29100
-18
7550
925
284
-18
7690 | 196
29780
-28
7350
935
285
285
-137
3015
29860
-720 | 206
29760
-27
2530
245
286
-197
-19820
 2/6,5
29780
-26
7550
975
287
287
330
29820
-// | 17-
1980
28'
28'
28'
28'
2980
2980
773 | | Fuel Flow - gal/hr Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Firme - Min AS - knots Altitude - ft Air Temp - C Type Gas Fress - Thg Fuel Hand - gal/hr Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Flow - gal/hr Fuel Press - PSI Fuel Press - PSI Fuel Flow - gal/hr Fuel Press - PSI | 17-1
0
159
29800
7680
590
279
279
279
239
239
239
29820
7580
965 | -252
29800
-29800
-290
-290
-252
29800
-22
7600
965 | 163
29800
-28
7690
860
281
-20
29280
-20
7630
965 | 173
21800
-28
7600
890
282
0N
-19
7660
390 | 1.17
2885
284
2886
2886
2886
2886
2886
2886
2886 | 196
29780
-28
7350
935
285
285
-137
3015
29860
-720
7720 | 206
29760
-27
2530
245
286
2765
29820
-14
2720
990 | 2/6,5
29780
-26
7550
975
287
287
-151
330
29820
-1/
7730
390 | 17-
1980
28'
28'
28'
28'
2980
2980
773 | | Fuel Flow - gal/hr Fuel Press - PSI Configuration Flight No RUN No. Fime - Min AS - knots Altitude - ft Air Temp - C Type Type - St Cas Temp - C Type - St Cas Temp - C Type - St Cas Temp - C Type - St Configuration Flight No RUN No. Fime - Min AS - knots Atitude - ft Air Temp - C Type - C Type - C Type - St Type - C Type - C Type - C Type - Type - C Type - | 17-1
0
159
29800
7680
590
279
279
279
239
239
239
29820
7580
965 | -252
29800
-29800
-290
-290
-252
29800
-22
7600
965 | 163
29800
-28
7690
860
281
-20
29280
-20
7630
965 | 173
21800
-28
7600
890
282
0N
-19
7660
390 | 1.17
2885
284
2886
2886
2886
2886
2886
2886
2886 | 196
29780
-28
7350
935
285
285
-137
3015
29860
-720
7720 | 206
29760
-27
2530
245
286
2765
29820
-14
2720
990 | 2/6,5
29780
-26
7550
975
287
287
-151
330
29820
-1/
7730
390 | 17-
28°
28°
28°
28°
28°
28°
28°
2886
2986 | | Fuel Flow - gal/hr Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Firme - Min AS - knots Altitude - ft Air Temp - C Type Gas Frees - THg Fuel Hand - gal/hr Fuel Press - PSI Fuel Press - PSI Fuel Press - PSI Fuel Flow - gal/hr Fuel Flow - Gas As - knots Attitude - ft As - knots Attitude - ft As - Gas Frees - THg Fuel Used - gsl Fuel Flow - gal/hr Fuel Used - gsl Fuel Flow - gal/hr | 17-1
0
159
29800
7680
590
279
279
279
239
239
239
29820
7580
965 | -252
29800
-29800
-290
-290
-252
29800
-22
7600
965 | 163
29800
-28
7690
860
281
-20
29280
-20
7630
965 | 173
21800
-28
7600
890
282
0N
-19
7660
390 | 1.17
2885
284
2886
2886
2886
2886
2886
2886
2886 | 196
29780
-28
7350
935
285
285
-137
3015
29860
-720
7720 | 206
29760
-27
2530
245
286
2765
29820
-14
2720
990 | 2/6,5
29780
-26
7550
975
287
287
-151
330
29820
-1/
7730
390 | 17-
1980
28'
28'
28'
28'
2980
2980
773 | . Total March | TEST I | DATA | | | | | | ERRO | R | | |--|--|------------------|--------------|------------------------------|---|--|--|--|--------------| | | | F-86F | USAF | No. 51 | 13506 | ration is a gramming and a discourage of | | | | | Teat | 1956 | 11. | KAI | CON | n ar gerden hans i gentue | | Management to prove to | ne feedame | | | Configuration | 1 . | أتبال بنبال دبيا | eriv. | | | v. v Marie Harris armatyrique | | ~ anatomidentes dil 1 | | | Flight No RUN No. | 447.7 | 124 | 11.1 | 12.1 | ,
(1. | - | ~ | · · · · · · · · · · · · · · · · · · · | · | | Time - Min | 1428 | | 4.77 | 2.09 | | The state of s | | | | | IAS - knots | 356 | 36/15 | 363.3 | 369.5 | | | Herrican and a company of | | A. 100-14 A | | Altitude – ft
Air Temp – ^e C | 29840 | 127.750 | 2.9780 | 127780 | 7 | | | | _ | | Alf Temp - C | 7740 | 1553 | 1-3- | 1 | - | | | - | <u> </u> | | RPM | | 1000 | 7290 | 7740 | | | | | ļ | | Ex. Gas Temp - °C
Ex. Gas Press - "Ho | 1000 | 1000 | 17000 | 1320 | | | | ļ | | | Fuel Used - gal | 302 | t3.7 | 1010 | 308 | + | | | | ļ | | Fuel Flow - gel/hr | 1220 | 309 | 1300 | 1000 | | | | | | | Fuel Press - PSI | | | | Server - Halfle Alisa Caselo | | | <u> </u> | <u> </u> | | | Test | 1 40 | A V / 44 | 1245 1 | £124 | 7 E 7 | 1745 | 1.75 | | | | Configuration | 1-4 | AXIM | | | 5,46 | 分子子 | | PRAI | d | | Flight No. | 17 | - | THE STATE OF | | 1/7 | 6 | 111 | 77 | フラ | | Cime - Min | | | | ~~ | | 7 | | | 1-1-2 | | AR-knots | 2.50 | 234 | 50/ | 2.27 | 222 | 227 | 3.00 | 470 | 37 | | Altitude – ft | 13531 | 20300 | 21/20 | 2000 | 122 | 1300 | 7785 | 17867 | 3/4 | | Air Temp - C | -22 | 7-18 | -27 | -27 | -22 | -36 | | 1375 | 14 | | RPM | 7/20 | ファラハ | 7700 | フタカハ | 7720 | ラシスク | 9210 | 1000 | 7/1 | | Ex. Gas Temp - C | 1010 | 7770 | 900 | 720 | 476 | 945 | 1025 | | 49 | | Cx. Gas Press - "Ha | | | | | | 7-14 | -/ | Para | 2.22 | | | L | | | | | | | | | | Tuel Used - gal | | 1 | |
j | ł | | 3 | | | | fuel Hand — gal
fuel Flow — gal/hr | | | | | | | | | | | Fuel Hand — gal
Fuel Flow — gal/hr
Fuel Press — PSI | MA | ×MU | ML | EVEL | بسارهم | 6HT | 4/83 | PEEL | | | Fuel Used — gal
Fuel Flow — gal/hr
Fuel Press — PSI
Cast
Configuration | MA | XIMU | ML | EVEL | 12/17
W/17 | 6HT
HOUT | A/R3 | PEE L | | | Fuel Used — gal
Fuel Flow — gal/hr
Fuel Press — PSI
Cast
Configuration
Flight No. | MA
14 | × IM II | ML | EVEL | P.L. | ed T
Hout | A/R3 | PEEL | | | Fuel Used — gal
Fuel Flow — gal/hr
Fuel Press — PSI
Configuration
Flight No. | 19- | 17 | 17 | | PL,
WIT | 6HT
HOUT | A/RS | P&&L | | | Fuel Used — gal
Fuel Flow — gal/hr
Fuel Press — PSI
Configuration
Flight No. | 19- | 17 | 17 | | PL,
WIT | 6HT
HOUT | A/RS | Par (| | | Fuel Used — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Cast Configuration Flight No. Cirne — Min. AS — knots Mititude — ft | 79-
256
4430 | 424
19880 | 350 | | PLI | 6HT
HOUT | A/RS | Per C | | | Fuel Used - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Lonfiguration Clight No. Cizne - Min AS - knots Mititude - ft | 75.6
44.80 | 424
19880 | 350
29700 | | P1. | 6HT
HOUT | A/RS | Pss. | | | Fuel Used - gal Fuel Flow - gal/hr Fuel Press - PSI Cest Lonfiguration Clight No. Cizne - Min AS - knots Mititude - ft | 75.6
44.80 | 424
19880 | 350
29700 | | P) | 6 H T
HOUT | A/RS | PSE (| | | Fuel Hand — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fast Configuration Clight No. Cizne — Min AS — knots Mititude — ft ir Temp — C PM Ex. Gas Temp — C | 75.6
44.80 | 424
19880 | 350
29700 | | P L | 6AT
HOUT | A/RS | esel. | | | Fuel Haed — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fast Configuration Flight No. Cirne — Min AS — knots Mititude — ft Air Temp — C. PM Ex. Gas Temp — C. | 75.6
44.80 | 424
19880 | 350
29700 | | P A | 6AT
HOUT | A/RS | eset. | | | Fuel Used — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Test Configuration Clight No. Cime — Min AS — knots Mititude — ft Air Temp—°C CPM The Gas Temp—°C CRACTE — SAC | 75.6
44.80 | 424
19880 | 350
29700 | | P A | 6AT
HOUT | A/RS | eset. | | | Fuel Hand — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fast Configuration Hight No. Fizne — Min AS — knots Mititude — ft ir Temp — C IPM To Gas Temp — C | 75.6
44.80 | 424
19880 | 350
29700 | | | 6HT
HOUT | A/RS | PEEU. | | | Fuel Hand — gal Fuel Flow — gal/hr Fuel Press — PSI Cast Configuration Flight No. Cizne — Min AS — knots Mittude — ft Mr. Tamp — C T. Gas Tamp — C T. Gas Press — *Hg Tel Hand — gal Tel Press — PSI Tel Press — PSI | 75.6
44.80 | 424
19880 | 350
29700 | | | 6AT
HOUT | A/RS | PEEL | | | Fuel Hand — gal Fuel Flow — gal/hr Fuel Press — PSI Fast Configuration Flight No. Flig | 75.6
44.80 | 424
19880 | 350
29700 | | #17
W17 | HOUT | A/RS | PEEL | | | Fuel Hand — gal Fuel Flow — gal/hr Fuel Press — PSI Fast Configuration Flight No. Cizne — Min AS — knots Attitude — ft AX — Temp — C TYPM TYP | 75.6
44.80 | 424
19880 | 350
29700 | | | 6AT-
HOUT | A/RS | PEEL E | | | Fuel Hand — gal Fuel Flow — gal/hr Fuel Press — PSI Cast Configuration Flight No. Cime — Min AS — knots Mittude — ft Mr Tamn — C T. Gas Tamn — C T. Gas Press — *Hg Tel Hand — gal Tel Flow — gal/hr Tel Press — PSI Cast Configuration Light No. Lime — Min Min | 75.6
44.80 | 424
19880 | 350
29700 | | | 6AT-
HOUT | A/RS | PEEL E | | | Inal Hand — gal Fuel Flow — gal/hr Fuel Press — PSI Cast Configuration Flight No. Cime — Min AS — knots Attitude — ft Ar Temp — C The Hand — gal Fuel Hand — gal Fuel Flow — gal/hr Cuel Press — PSI Cast Configuration Light No. Cime — Min AS — knots | 75.6
44.80 | 424
19880 | 350
29700 | | | 6 N T
HOUT | A/RS | Psist. | | | Fuel Flow — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fast Configuration Flight No. Fixe — Min AS — knots AS — knots AS — tonn—°C Trann—°C Trannn—°C Trann—°C Trannn—°C Tran | 75.6
44.80 | 424
19880 | 350
29700 | | | 6AT
HOUT | A/RS | Psist. | | | Fuel Flow — gal/hr Fuel Flow — gal/hr Fuel Press — PSI Fast Configuration Flight No. Time — Min AS — knots AS — knots AS — tonn—°C TYPM | 75.6
44.80 | 424
19880 | 350
29700 | | | 6AT
HOUT | A/R35 | | | | Fuel Hand — gal Fuel Flow — gal/hr Fuel Press — PSI Cast Configuration Flight No. Cime — Min AS — knots Lititude — ft Lix Gas Temp—°C | 75.6
44.80 | 424
19880 | 350
29700 | | | 6AT
HOUT | A/RS
PT. | | | | Tuel Used — gal Fuel Flow — gal/hr Fuel Press — PSI Cast Configuration Flight No. Cime — Min AS — knots Attitude — ft Ar Termy — C PM Cast Press — PHg Cast Press — PHg Cast Press — PSI Cast Press — PSI Cast Press — PSI Cast Press — PSI Cast Cast Cast Cast Cast Cast Cast Cast | 75.6
44.80 | 424
19880 | 350
29700 | | | 6AT
HOUT | A/RS | | | | Inel Hand — gal Fuel Flow — gal/hr Fuel Press — PSI Lest Lonfiguration Flight No. Lizne — Min AS — knots Lititude — ft Lix Gas Temp—°C Lix Gas Temp—°C Lix Gas Press — *Hg Lial Flow — gal/hr Lial Press — PSI Lest Lonfiguration Light No. Lima — Min AS — knots Lititude — ft Lix Temp — °C Lix Gas | 75.6
44.80 | 424
19880 | 350
29700 | | | 6 A T
HOUT | A/RS | | | | Inel Hand — gal Fuel Flow — gal/hr Fuel Press — PSI Cast Configuration Flight No. Cime — Min AS — knots Lititude — ft Lix Gas Temp—°C LPM Lix Gas Temp—°C Lix Gas Press — *Hg Luck Flow — gal/hr Luck Press — PSI Cast Cast Configuration Light No. Lima — Min AS — knots Lititude — ft Lix Gas Temp—°C Lix Gas Press — *Hg Lix Gas Temp—°C Lix Gas Press — *Hg Pres | 75.6
44.80 | 424
19880 | 350
29700 | | | 6AT
HOUT | | | | | Inel Hand — gal Fuel Flow — gal/hr Fuel Press — PSI Cast Configuration Flight No. Cime — Min AS — knots Lititude — ft Lix Gas Temp—°C LPM Lix Gas Temp—°C Lix Gas Press — *Hg Luck Flow — gal/hr Luck Press — PSI Cast Cast Configuration Light No. Lima — Min AS — knots Lititude — ft Lix Gas Temp—°C Lix Gas Press — *Hg Lix Gas Temp—°C Lix Gas Press — *Hg Pres | 75.6
44.80 | 424
19880 | 350
29700 | | | 6 H T HOUT | | | | | Fuel Hand — gal Fuel Flow — gal/hr Fuel Press — PSI Lest Configuration Tight No. Time — Min AS — knots Ititude — ft It Tamp — C IT Gas Tamp — C It Press — PSI Lest Ast Ast Ast Ast Ast Ast Ast | 75.6
44.80 | 424
19880 | 350
29700 | | | 6AT
HOUT | A/RS | | | A STATE Ĺ Ţ | Гон | ************************************** | - | Programme of the second | | | 35() to | 1 4 | · · · · · · · · · · · · · · · · · · · | er sammer i førstere som | | |--
--	--	--	--
--|--| | | | AIRSI | PEAD | _ ~~ | 611 | RALLO | Non | market and a second | | garinecimos sus di | | Configuration Flight No IAS = knots CAS Pacer = mph Altitude = ft Air Temp = C | 1.1411 | PING | OF M | | CLAP. | 7 447 | KAGE | | 777 | 772 | | Flight No. | 7 | 16 | 1.6 | 16 | -48 | 1/4 | 16 | -18- | 16 | | | AS = Knots | 400 | 267 | 4 | 4/3 | 47,9 | 190 | | 4177 | 176 | 1545 | | CAS Pacer mph | 462.5 | 3075 | 2873 | 3000 | 4/01) | /7/ | 7/5 | 2.5 | 19700 | 175.5 | | Altitudo – ft | 17730 | 34/00 | 37700 | 7,18,00 | 54500 | 39,450 | 14700 | 11/00 | HIQO | 11/2 | | Air Temp - C | 420 | -30 | -32 | 790 | - £5 | AS | +2/ | | -3 | -6 | | rue: usea - gal | - | | | | | ļ | بمبهدر إمواد ا | ~#*·* ~******** | garagers to the second control of | | | Gear/Flapa | g ermanant-gam, er | | · v | reference des centre ne | | | | c commentation | ************************************** | | | l'ime :- min | and the adjustments of the second | | er e destatoristationes | | | | ander or spainter to this bar- | | | | | rost | * * ** · · · · · · · · · · · · · · · · | ng ay ay ay an eng ang | same on company to section of | | | orne a demonstration of the second se | | 1 | | | | Configuration | and the state of t | nigayi yathara | | engaging of the state st | etitikan epikaration-approxim | | · · · · · · · · · · · · · · · · · · · | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | - The same of | | | Flight No. | | ar (, | · · · · · · · | No. 20 Comp. 1 Comp. | | | | Proper States de la capación c | | <u> </u> | | | | | | | read in the graph of | | | | | | | LAS Pacer - mpb | | erangsan stan make 1907 s | and the second second | ************************************** | | | | | | | | Altitude – ft | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | Air Temp-°C | Market of the Control of States | n manuferthing angle to be lessed as a | | | | | | | | | | Free! If and mal | | | La saragiang agents — Hannar (2) | CONTRACT CARRONNESS | | | | | | | | Fuel Used - gal
Cear/Flaps | | | errenden ser erre deserte. | | | | | | | | | Time - min | | , <u></u> | Charles Charles | | | | | | | <u> </u> | | 1100 - 101h | | أست بسبوا الديسيا | ما و درو منها منها | L | | | | L | · | ł | | Test
Configuration
Flight No.
IAS – knote | | | | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | | 7 June 1 June 1 July | The common series | | *************************************** | | | CAS Pacer mph | | - - | , , | | ' ' |] | | | | | | CAS Pacer mph
Altitude ft
Air Temp C | | | | | | | | | | | | Air Temp °C | | | | | |] | | | |] | | Fuel Used gal | | | | | | | | | | | | Gear/Flaps | | | | | | | | | | | | Time - min | | | | | | | | | | T | | | ton car c - I | | \$ - ev -yen' | | • • • • • | # ward | b | Bride Comment of Special Contractions | P | | | Section of the sectio | | | | | | | | | | | | | p | | | | gant frakringstift i klab | المناسبة والمناسبة والمناسبة والمناسبة | | Total part of the same | | | | Test | p | The second secon | معالم المعالم | · · · · · · · · · · · · · · · · · · · | gane d'estre que est establishe | er enten i a filosofie dispetiti sis este | | The application of the state | | | | Test
Configuration | | | | en in section of the | and the same of the same | | \$100 p. 10010 p. 1001 | - Michael (Michael Andreas) and an administration of the second s | | | | Test
Configuration
Flight No. | | | | man alas de la composició composic | | | tion to the state of | | | | | Test
Configuration | and the second s | | | | | | harm to report the table | | | | | Test
Configuration
Flight No. | 10 mm | | | | | | | | | | | Test Configuration Flight No. IAS _ knots CAS Pacer-mph | 10 m | | | | | | | | | | | Test Configuration Flight No. IAS _ knots CAS Pacer-mph | | | | | | | | | | | | Test Configuration Flight No. IAS = knots CAS Pacer-mph Altitude - ft Air Temp - °C Fuel Used = gal | | | | | | | | | | | | Test Configuration Flight No. IAS = knots CAS Pacer-mph Altitude - ft Air Temp - °C Fuel Used = gal | | | | | | | | | | | | Test Configuration Flight No. IASkucls CAS _Pacer_mph Altitudeft Air Temp°C Fuel Usedgal Gear/Flaps | | | | | | | | | | | | Test Configuration Flight No. IAS = knots CAS Pacer-mph Altitude - ft Air Temp - °C Fuel Used = gal | | | | | | | | | | | | Test Configuration Flight No. IASkucls CAS _Pacer_mph Altitudeft Air Temp°C Fuel Usedgal Gear/Flaps | | | | | | | | | | | | Test Configuration Flight No. IASkucls CAS _Pacer_mph Altitudeft Air Temp°C Fuel Usedgal Gear/Flaps | | | | | | | | | | | | Configuration Flight No. IAS = knots CAS Pacer-mph Altitude = ft Air Temp = °C Fuel Used = gal Gear/Flaps | | | | | | | | | | | **[** | { } { } . . . | | T DATA | | 16 P 115 | AF NO. | 51 1331 | () (| Annual Control on Control of Street, co. 17 | we were some the course | | |--|---|---------|-----------|--------|-------------|--------------|--|--------------------------|--------------| | 'est | STA | TRC TE | RUST | CALEBI | RA LIQN | 20 | MAYS | 4-EOH | <u> 4005</u> | | onliguration | INL | ETS | POREE | NS 7 | PETRA | TED | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | grane de stergalence mer | · | | hrust Run No. | | 1527 | | | 12020 | - | | | - | | RPM | 3/83 | 3960 | 4775 | 2565 | 6360 | 743 | 7950 | 1225 | 13 | | Air Tome °C | 20.4 | 20.6 | 20.9 | 31,2 | | 21.6 | 21.8 | | | | CGT "C | 3727 | 420 | | 360 | 300 | | 640 | 965 | | | Atmospheric Pro
Bure Ha | B . K.2/2 | 27.573 | 27.515 | 21.50 | 27.57.5 | 2755 | 27.515 | 22515 | 27.5 | | roas Thrust Ab | s 290 | 17- | 760 | 12.70 | 2090 | 3450 | 4995 | 6805 | 195 | | vel
Used - gal | A | .5 | - | 1020 | 8 | 12 | 18 | 25 | 75 | | Ilad Direction | SOUTH | | | | | | | | SOUT | | | | | ···· | | | | | 9 | 777 | | and Velocity kno | ita' 7 | | 8 | 12 | 0 | | es e | 1 . 7 | | | ind Velocity-kno
Time - Sec | 873 | 50.4 | 8
76.0 | 75. 7 | 23.6 | 22.0
22.0 | 23.3 | 62.3 | 76. | | ind Velocity-kno
Time - Sec | 873 | | 76.0 | 75.9 | | 72.0 | ing the state of t | 62.3 | | | Time Sec Time Sec Tost Configuration | 873 | | 76.0 | 75.9 | 73. C | 72.0 | ing the state of t | 62.3 | | | Time Sec Fish Fost Configuration Thrust Run No. | 51'A
51'A
50' | C TH | 76.0 | 75.9 | | 72.0 | ing the state of t | 62.3 | | | Find Velocity kno Fime Sec Fost Configuration Fhrust Run No. RPM | 87.3
SIA
TN
7/55 | C VII | 76.0 | 75.9 | | 72.0 | ing the same of th | 62.3 | | | Find Velocity kno Fimo - Sec Fost Configuration Fhrust Run No. RPM Air Temp *C | STA
TN
7/55
12.2.4 | C VII | 76.0 | 75.9 | | 72.0 | ing the same of th | 62.3 | | | Find Velocity kno Fime Sec Fost Configuration Fhrust Run No. RPM Air Tomp *C | 87.3
SIA
TN
7/55
22.4
490 | C TH | 76.0 | 75.9 | | 72.0 | ing the same of th | 62.3 | | | Time - Sec Tost Configuration Thrust Run No. RPM Air Tomp *C. EGT *C. Armospheric Pro | 87.3
SIA
TN
7/55
22.4
490 | C TH | 76.0 | 75.9 | | 72.0 | ing the same of th | 62.3 | | | Time - Sec Fine - Sec Fost Configuration Chrust Run No. RPM Air Tomp *C CGT *C Aimospheric Presure **PH | 51A
IN
7/55
22.4
490
2356 | C TH | 76.0 | 75.9 | | 72.0 | ing the same of th | 62.3 | | | Time - Sec Time - Sec Tost Configuration Thrust Run No. RPM Air Temp. *C. EGT *C. Armospheric Presure **Hg Tross Thrust - It | 87.3
SIA
IN
7/5.5
22.4
490
8 2258 | C TH | 76.0 | 75.9 | | 72.0 | ing the same of th | 62.3 | | | Find Velocity kno Fimo - Sec Fost Configuration Fhrust Run No. RPM Air Temp *C EGT *C Armospheric Presure #Hg Tross Thrust - It Fuel Used -yal Wind Direction | 87.3
SIA
IN
7/5.5
22.4
49.0
88.3430 | CC TH | 76.0 | 75.9 | | 72.0 | ing the same of th | 62.3 | | | Time - Sec Tost Configuration Thrust Run No. RPM Air Tomp *C CGT *C Armospheric Produce #Hg Tross Thrust - It Fuel Used -yal | 87.3
SIA
IN
7/5.5
22.4
49.0
88.3430 | CC TH | 76.0 | 75.9 | | 72.0 | ing the same of th | 62.3 | | # APPENDIX (V) TABLE OF CONTENTS | Report | | Page Number | |--------------------|--------------|-------------| | Preliminary Report | 3 May 1954 | 1 | | Preliminary Report | 17 May 1954 | 2 | | Preliminary Report | 30 June 1954 | 4 | COMDRAFFIC, EDWARDS AFB, CALIFORNIA COMDR WADC, WRIGHT-PATTERSON AFB, OH'O 3 MAY 54 SUBJECT FLIGHT TEST OF PTE INSTALLATION IN F-86F.... THE AIR FORCE PHASE FOUR AND OPERATIONAL SUITABILITY TEST OF THE GENERAL ELECTRIC BAILMENT ATRCRAFT F-86F S/N 506 EQUIPPED WITH PRE-TURBINE INJECTION BEGAN 21 APRIL 54. TO DATE FOUR FLIGHTS UTILIZING NINETEEN MINUTES PTI TIME HAVE BEEN CONDUCTED. PTI WAS STARTED ON ALL FOUR FLIGHTS AT 20,000 FEET ALTITUDE DURING THE CLIMB AND SHUT OFF AT 45,000 FEET ALTITUDE EXCEPT ON THE LAST FLIGHT WHEN THE PILOT LEFT PTI ON AND LEVELED OFF AT 45,000 FEET ALTITUDE WHERE THE PTI BLEW OUT. OPERATION HAS BEEN SATISFACTORY DURING THE CLIMBS FROM 20,000 to 45,000 FEET ALTITUDE ON THESE FOUR FLIGHTS. HOWEVER DUE TO BINDING OF THE NOZZLE ACTUATOR ASSEMBLY IT HAS NOT BEEN POSSIBLE TO MAINTAIN SATISFACTORY PTI OPERATION IN LEVEL FLIGHT. IN THOSE CASES WHERE A PTR LIGHT WAS ACCOMPLISHED IN LEVEL FLIGHT THE NOZZLE STUCK IN THE CLOSED POSITION RESULTING IN A CRITICAL DROP OFF IN MAIN ENGINE SPEED DUE TO THE INCREASED PTI PRESSURES, REPLACEMENT OF THE NOZZLE AND ACTUATOR ASSEMBLY DID NOT ELIMINATE THE BINDING. INVESTIGATION REVEALED THAT OIL LEAK-AGE FROM A BEARING IN THE ACTUATOR MOTOR COULD BE CAUSING THE JACK-SHAFT TO GUM UP AND BIND, AND ALSO COULD BE CAUSING THE ACTU-ATOR MOTOR BRAKE TO EXPAND AND BIND DURING MOTOR OPERATION. AT THIS TIME THE ACTUATOR MOTOR IS BEING MODIFIED IN AN ATTEMPT TO ELIMINATE THIS PROBLEM. ANOTHER FACTOR THAT MAY HAVE CONTRI-BUTED TO THE BINDING IS THE EXCESSIVE FRICTION AT THE ACTUATING ARM SLOTS IN THE NOZZLE. AT PRESENT A NOZZLE WITH SURFACE HARD-ENED ACTUATING ARM SLOTS AND SURFACE HARDENED SEGMENTS HAS BEEN INSTALLED. IT IS EXPECTED THAT THE PROBLEM OF THE BINDING NOZZLE WILL BE ELIMINATED WITHIN THE NEXT WEEK. HOWEVER, CONSIDERABLE DELAY HAS ALREADY RESULTED FROM THIS MALFUNCTION. IN ORDER TO SATISFACTORILY ACCOMPLISH THE PHASE FOUR FLIGHT TEST AND OPERA-TIONAL SUITABILITY TEST IT WILL BE NECESSARY TO EXTEND THE PROGRAM DURATION FROM TWO WEEKS TO SIX WEEKS. IT IS REQUESTED THAT THIS EX-TENSION BE AUTHORIZED. DONALD H. WOOLEY, 1/Lt, USAF FTDTP Project Engineer H. A. HANES, Colonel, USAF Director, Flight Test and Development APPENDIX IV COMOR AFFTC, EDWARDS AFB CALIFORNIA COMDR WADC, WRIGHT-PATTERSON AFB OHIO 17 May 54 SUBJECT FLIGHT TEST OF PTI INSTALLATION IN F-86F.... TEST FLIGHTS OF THE AIR FORCE PHASE FOUR AND OPERATIONAL SUITA-BILITY TEST OF THE GENERAL ELECTRIC BAILMENT AIRCRAFT F-86F S/N 506 EQUIPPED WITH PRE-TURBINE INJECTION WERE COMPLETED 6 MAY 54. EIGHTEEN FLIGHTS HAVE BEEN MADE TOTALING THIRTEEN HOURS AND THIRTY MINUTES INCLUDING TWO HOURS PTRTIME. DURING THE FIRST FOUR FLIGHTS PTI OPERATION WAS NOT ENTIRELY SATISFACTORY BECAUSE OF BINDING OF THE NOZZLE AND/OR NOZZLE ACTUATOR ASSEMBLY. THIS CON-DITION WAS ELIMINATED BY SUITABLE MODIFICATIONS AND THE FIFTH THROUGH THE TENTH FLIGHTS WERE MADE WITH PTI OPERATING SATIS-FACTORILY. ON THE ELEVENTH FLIGHT A TURBINE BUCKET FAILED. TIME ON THE BUCKETS WHEN FAILURE OCCURRED WAS TWO HOURS AND EIGHT MINUTES OF PTI TIME. THE TURBINE WHEEL WAS REPLACED AND PTI OP-ERATION WAS SATISFACTORY UNTIL FLIGHT EIGHTEEN WHEN ANOTHER TUR-BINE BUCKET FAILED. TIME ON THIS SET OF BUCKETS WAS ONE HOUR AND FORTY-THREE MINUTES. INFORMAL INFORMATION FROM THE GENERAL ELECTRIC COMPANY INDICATES THAT THE LONGEST TIME TO BE ACCUMU-LATED ON A SET OF TURBINE BUCKETS WAS TWO HOURS AND TWELVE MIN-UTES AT WHICH TIME A 1200°C START NECESSITATED THE REMOVEL OF THE TURBINE WHEEL. IT IS RECOGNIZED THAT THE PTI INSTALLATION HAS CON-SIDERABLE MERIT BUT DUE TO THE RELATIVELY SHORT DURATION OF THE TEST IT IS DIFFICULT TO FULLY EVALUATE THIS SYSTEM. IT IS ANTICIPATED THAT ADDITIONAL TESTING WILL ELIMINATE THE DIFFICULTIES ENCOUNTERED. THE AFFTC RECOMMENDS THAT FURTHER DEVELOPMENTAL TESTING ON THE PTI INSTALLATION BE ACCOMPLISHED BOTH BY GENERAL ELECTRIC AND BY THE AIR FORCE. TO EXPEDITE THE PTI PROGRAM IT IS SUGGESTED THAT THE IN-SERVICE FUNCTIONAL DEVELOPMENT TEST BE RUN CONCURRENTLY WITH THE ABOVE TESTS. IT IS ALSO RECOMMENDED THAT THE IN-SERVICE TEST BE CONDUCTED UNDER STRICT TEST CONDITIONS WITH SUITABLE LIMI-TATIONS ON PTI OPERATION. THE FOLLOWING APPROXIMATED PERFORMANCE DATA WERE OBTAINED FROM THE INSTRUCENT CORRECTED, RAW DATA WITH A GROSS TAKE-OFF WEIGHT OF 15,400 POUNDS. RATE OF CLIMB AT 20,000 FEET WAS INCREASED 6,500 FEET PER MINUTE WITH PTI AS COMPARED TO DRY OPERATION. THIS DELTA RATE OF CLIMB IS INDICATIVE OF THE INCREASE IN CLIMB PERFORMANCE THROUGHOUT THE 20,000 TO 45,000 FOOT ALTITUDE RANGE TO WHICH THIS PTI ENGINE CONFIGURATION IS LIMITED. AN AVERAGE TIME TO CLIMB FROM 20,000 TO 45,000 FEET WAS FOUR MINUTES WITH PTI. AT 40,000 FEET TIME TO ACCELERATE FROM MINIMUM TO MAXIMUM AIRSPEED WAS DECREASED FROM FOUR MINUTES TWENTY-TWO SECONDS TO ONE MINUTE FOR TY SECONDS WITH PTI. AT 30,000 FEET AN .025 INCREASE IN MAXIMUM LEVEL FLIGHT MACH NUMBER WAS OBTAINED OVER DRY OPERATION. THE TEST PILOT REPORTS THAT ALTHOUGH PTI OPERATION DURING THE FIRST FOUR FLIGHTS WAS UNSATISFACTORY. PTI OPERATION DURING THE SUBSEQUENT FOURTEEN FLIGHTS WAS SIMPLE AND DEPENDABLE. DONALD H. WOOLEY, 1/Lt, USAF H. A. HANES, Colonel, USAF FTDTP Project Engineer THE STATE OF Director, Flight Test and Development APPENDIX IV # PRELEMINARY EVALUATION OF THE GENERAL ELECTRIC PRE-TURBINE INJECTION SYSTEM #### A. PUR POSE 1. This report presents the results of a preliminary evaluation to determine the practicability and suitability of the General Electric Company's pre-turbine injection installation in an F-86F irroraft. ### B. INTRODUCTION - 1. The pre-turbine injection installation (hereafter referred to as PTI) was developed by the General Electric Company as a thrust augmentation system for the F-86F aircraft. The system is designed to give approximately 40 /o increased thrust and is restricted to altitudes between 20,000 and 45,000 feet. - 2. Flight testing of the PTI system was authorized by WADC, and on 21 April 1954 a test program was initiated on the General Electric Company's bailment F-86F S/N 506. During the testing period of 21 April to 6 May 1954, eighteen test flights were made, accumulating 13:30 hours of flight time, approximately 2:00 hours of which was PTI time. ## C. TEST RESULTS AND DISCUSSION - 1. The following is a resume of the main difficulties encountered during the program: - a. During the first four flights PTI operation was unsatisfactory. On each of these flights PTI was started at 20,000 feet and did operate satisfactorily to 45,000 feet, however, ittempts to relight PTI after the climb were unsuccessful. On those attempts where a light was made, a critical drop in engine speed resulted. It was determined that this drop in speed was caused by failure of the jet nozzle to open to the proper position. Investigation revealed several factors which may have prevented the jet nozzle from opening properly. After suitable modifications were made the operation of the PTI system was satisfactory. A list of the factors contributing to the binding of the nozzle and the modifications made, is as follows: - (1) Friction of the nozzle actuating arms at the nozzle actuating arm slots; friction was reduced by installing a nozzle body with surface hardened arm slots. - (2) Fration between the nozzle segments and the nozzle body; surface hardened nozzle segments were installed. - (3) Serving of the nozzle jack shaft in the
needle bearings at high temperatures; diameter of the jack shaft was decreased. - (4) Burling of the waste actuator motor brake due to absorption of oil to age? clearance of brake increased. - (5) Gumming of the nozzie jack shaft due to oil leakages all sources of oil leakage to the assembly were climinated. - b. On flight No. 10 PTI was started at 45,000 feet in a climb. The climb continued to 50,000 feet with PTI operating satisfactorily. AT 50,000 feet PTI was sbut off and relighted satisfactorily using a "speed-jog" technique. To light PTI by the "speed-jog" method; a throttle setting of slightly less than full forward is established, immediately upon starting PTI the throttle is advanced to the full forward position. The climb was continued to 53,420 feet. At this altitude a loud noise and subsequent vibration caused the pilot to retard the throttle to idle. The aircraft was landed with the engine at idle speed. An inspection revealed that a single turbine backet had failed. - c. On flight No. 11 difficulty was experienced in lighting and maintaining PTI. This was attributed to a low main engine fuel flow setting for PTI operation. The main engine fuel flow was increased and PTI operation was satisfactory in subsequent flights. - d. On flight No. 18 at 44,000 feet after being on PTI for approximately 13 minutes a loud noise and an aft fire warning light caused the pilot to cut off the engine and make a dead-stick landing. The amount of continuous PTI time accumulated during this flight was longer than on any previous flight. Inspection of the engine revealed another single turbine bucket failure. This was the last flight made under the Air Force test program. - 2. a. A zyglo inspection of the two turbine wheels which suffered the bucket failures did not reveal any defects in the turbine wheel blanks. The maximum tip diameters were 34.334 and 34.322 inches, respectively. The first of these diameters exceeds the maximum allowable diameter of 34.325 for turbine wheels in standard use, however, for the PTI test the General Electric Company has tentatively increased the maximum print dimension to 34.385. The maximum blank diameters of the two turbine wheels were 26.736 and 26.744 inches respectively. The standard maximum blank diameter is 26.738 inches, on this basis the second turbine wheel was rejected. The buckets from the two turbine wheels have been sent by the General Electric Company to the Thompson Laboratory of the General Electric Company for analysis; the results are not yet available. - b. The PTI operation time accumulated by each set of buckets at the time of failure was 2 hours and 8 minutes and 1 hour and 43 minutes respectively. Informal information from the General Electric Company indicates that 2 hours and 12 minutes is the longest PTI time to ever be accumulated on one set of turbine wheel buckets. - 3. The procedures for initial adjustment of the PTI system have not yet beenfinalized. At this time the PTI fuel flow is first adjusted on the ground to some predetermined value. The main fuel flow is then adjusted to be compatible with the PTI fuel flow, that is, to maintain a suitable pressure ratio between compressor discharge pressure and turbine discharge pressure so that PTI will start and operate satisfactorily. It is necessary to make very short duration PTI ground runs and usually to make one or two test thights before the system is set up properly. This procedure is under study by the General Electric Company and it is likely that it will be modified. - 4. During those flights when the PTI system was operating satisfactorily no difficulties were encountered in the operation of the system. Satisfactory PTI operation was demonstrated during all normally encountered aircraft maneuvers. The PTI system was started in climbs and dives and at both low and high airspeeds. Successful PTI lights are usually made on the first try using a normal starting procedure; while at 100% power momentarily pushing the throttle outboard to actuate a micro switch which starts the PTI. Use of the previously described speed-jog technique will almost always result in a satisfactory start should the normal starting procedure fail, providing the system is operating satisfactorily. - 5. The General Electric Company has estimated that about 400 manhours would be required to modify an aircraft which is in service, to the PTI configuration. After installation of the final configuration of the PTI system the maintenance of the system proper is not experted to be excessive. Engine maintenance, however, due to the frequent inspections necessary and the short service life of the turbine wheel and buckets, will require a considerable number of manhours. - 6. At this time the main disadvantages of the system are the short service life of turbine wheels and the maximum altitude limitation. The advantages are the increased performance of the aircraft, the simplicity of the system, and the easy adaptation of the system to great numbers of aircraft already in service. ## D. CONCLUSIONS - l. At this time the General Electric Company's present PTI system has not been flight tested sufficiently for normal use by operational organizations. The system as tested could be utilized in F-86F aircraft with the following limitations: - a. Altitude: 20,000 to 45,000 feet. - b. Maximum continuous operation of PTI: 10 minutes. - c. Maximum PTI operation per flight: 10 minutes. (In order that frequent inspections can be made during the preliminary testing). - d. Maximum service life of turbine wheel buckets: 2 hours of PTI time. - e. Time between zyglo inspection of turbine wheels and hot section inspection of engines; I hour of PTI time. - f. Maximum turbine wheel tip and blank diameters; to be as specified in applicable Technical Orders. - 2. Before being placed in operational organizations the PTI system should undergo a functional development test and further evaluation by an Air Force Flight Test organization. This test should be authorized as soon as possible in order that a fully developed PTI system be available in case of national emergency. - 3. The PTI system possesses considerable potential and should be further developed by the General Electric Company. ## E. RECOMMENDATIONS - 1. The following actions are recommended in order to complete the development of the PTI system: - a. Continuation of the General Electric Company's flight test program at Edwards Air Force Base in order to improve the present PTI system, with emphasis on increasing the maximum altitude and increasing the service life of the turbine buckets. - b. Authorization of a functional development test and evaluation of the present PTI system by the Air Force. This test would be primarily an evaluation of the capabilities and limitations of the present PTI system and would provide information to be used in the development of an improved system. The following problems should be given particular consideration: - (1) Service life of the turbine wheel and hot section parts under PTI operation. - (2) Effect of continuous long duration PTI operation at various altitudes. - (3) Allowable altitudes for PTI operation. - (4) Effect of PTI operation on the structure of the tail cone, tailpipe and aircraft fuselage. - (5) Determination of turbine bucket temperatures through the use of an instrumented nozzle diaphragm. - (6) Determination of maximum allowable turbine wheel tip diameter and turbine wheel blank diameter for PTI operation. - (7) Investigation of the adaptation of the free floating shroud ring assembly to the PTI installation to reduce the possibility of shroud seizure. - 2. Because of the potential of the PTI system and the advantages of this system it is recommended that further development and flight testing be authorized as soon as possible. WILLIAM D. MOTZNY, 1/Lt, USAF Project Engineer ## DISTRIBUTION ## Number of copies | Hq, USAF, | Washington 25, D.C. | | |-----------|---|------------------| | Attns | Director of Requirements, DCS/O | 1 | | Attns | Asst for Atomic Energy, DCS/O | 1 | | Attn: | Asst for Programming, DCS/O | 1 | | Attn: | Directorate of Operations, DCS/O | 4 | | Attns | Directorate of Procurement and Production Engine-
ering, Production Engineering Division DCS/M | 1 | | Attns | Directorate of Maintenance Engineering DCS/M | 2 | | Attn: | J.FDRD-AN, Directorate of Research and Developmen | t1 | | Attng | Directorate of Intelligence, DCS/O | _ | | | Attn: AFOIN-2B3 | 1 | | | Attn: AFOIN-2C1 | 1 | | Hq, AMC, | Wright-Patterson AFB, Ohio | | | Attn: | MCMRM, Material and Flight Safety Deficiency Br. | 1 | | Attn: | MCSRD, Directorate of Supply and Services | 1 | | Attn: | MXMZ, Programs Monitoring Office Supply, M and | | | | S Directorate | 1 | | Attn: | MCPBXA, Administration Office, Industrial Re- | | | | sources Div. | 1 | | Attn: | MCPPA, Aircraft Branch, Procurement Div. | 2 | | Attn: | MCPPXE, Aeronautical Equipment Section, Pro-
curement Div. | 1 | | Attn: | MCPPRT, Technical Office, Research and De- | | | | velopment Br., Procurement Div. | 1 | | Hq. WADC. | Wright-Patterson AFB, Ohio | | | Attn: | WCY, Assistant Chief of Staff | 1 | | Attn: | WCRO, Operations and Plans Office | 1 | | Attn: | WCS, Weapons System Div. | 2 | | Attns | WCOSI, Technical Info Intelligence Br. | 1
4
3
3 | | Attn: | WCOST, Test Requirements Br. | 4 | | Attn: | WCTE, Engineering Br. | 3 | | Attn: | WCOSR, Foreign Release Br. | | | Attn: | WCOF, Flying Safety Engineering Office | 1 | | Attn: | WCLSR, Aero Branch Aircraft Lab | 2 | | Hq. ARDC, | P.O. Box 1395, Baltimore 3, Maryland | | | Attn: | RDDAS | 3 | | Attn: | RDOS, Flying Safety Office | 1 | | Attn: | RDTST, Capt, Lucas | 1 | # DISTRIBUTION (continued) | | | No. of copies | |----------------------
--|-----------------------| | Director. | Air University Library, Maxwell AFB, Ala. | 1 | | Commanda
AFB, C | ant, USAF Institute of Technology, Wright-Patters
Dhio | ion
1 | | | rvices Technical Information Agency, Document So. Knott Bildg., 4th and Main Sts., Dayton 2, Ohio | ervice
6 | | | he Inspector General, USAF, Norton AFB, San dino, Calif. | 3 | | Chief, Air
AFB, C | Technical Intelligence Center, Wright-Patterson Phio | 1 | | Bureau of | Aeronautics, Dept. of the Navy, Washington 25, De | Ç Z | | Comdr, U | .S. Naval Air Material Center, Philadelphia, Pa. | 1 . | | Comdr, U | .S. Naval Air Test Center, Patuxent River, Md. | 1 | | | r Force Special Weapons Center, Attn: AF Atomic Library, Kirtland AFB, New Mexico | 1 | | FTE, E | | 1
1
1
1
5 | | | ir Technical Intelligence Center, Attn: AFOIN-
IB, Wright-Patterson AFB, Ohio | 1 | | | gic Air Command, Cffutt AFB, Omaha, Nebraska | | | Attn | Operations Analysis | 1 | | Attn:
Attn: | DM4D
OES | 3
1 | | NACA, 15. | 12 %H% St., N. W. Washington, 25, DC | | | Attn: | Office of Aeronautical Intelligence | 5 | | NACA, Lia
Attn: | aison Office, Wright-Patterson AFB, Ohio MCLANA | 1 | | APP CITY | AN LOUIS AND A STATE STA | A | ## CONFIDENTIAL AF Technical Report No. AFFTC 54-16 # DISTRIBUTION (continued) | | No. of cop | ie | |---|--------------------|----| | NACA, P. O. Box 273, Edwards, Calif. | | | | Attn: Mr. Walter C. Williams, High
Research Station | Speed Flight | | | Comdr, Alaskan Air Command, APO 942 o
Seattle, Wash. | c/o Postmaster, | | | Comdr, AFFTC, Edwards AFB, Calif. Attn: FTT | 1 | | | AF Engineering Field Representative at NA
Aero Lab, Moffett Field, Calif | | | | Comdr, Air Proving Ground Command, Eg
Attn: Technical Reports, A | | | | Comdr, Tactical Air Command, Langley A | AFB, Va | | | Comdr, MATS, Andrews AFB Washington Attn: Requirements and Develo | | | | The Rand Corp., 1700 Main St., Santa Mo | nica, Calif. | • | | ADC, Installations: Hq, ADC Ent AFB Colo. Attn: DCS/M Attn: DCS/O (Plans and Requiremen | 1
1 | | | Hq, WADC, Wright-Patterson AFB Ohio | | | | Attn: WCLPO Operations Office (Pow
Attn: WCSF Fighter Aircraft Br.
Attn: WCOSF Flight Data Br.
Attn: WCLEI-3 Instrumentation Br. | 2
2 | | | Special Dist. | 1 | | | General Electric Co., Edwards AFB, E | Facility, Edwards, | • | Armed Services Technical Information Agency Reproduced DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, OHIO This document is the property of the United States Government. It is furn shed for the duration of the contract and shall be returned when no longer required, or upon recall by ASTLA to the following address: Armed Services Technical Information Agency, Document Service Center. Knott Building, Dayton 2, Ohio. CLASSIFICATION CHANGED TO UNCLASSIFIED BY AUTHORITY OF ASTIA RECLASS. BULLETIN Date 28 May 1956 Signed Orthur & Creech OFFICE SECURITY ADVISOR # DEPARTMENT OF THE AIR FORCE HEADQUARTERS AIR FORCE MATERIEL COMMAND WRIGHT-PATTERSON AIR FORCE BASE OHIO FEB 1 9 2002 ## MEMORANDUM FOR DTIC/OCQ (ZENA ROGERS) 8725 JOHN J. KINGMAN ROAD, SUITE 0944 FORT BELVOIR VA 22060-6218 FROM: AFMC CSO/SCOC 4225 Logistics Avenue, Room S132 Wright-Patterson AFB OH 45433-5714 SUBJECT: Technical Reports Cleared for Public Release References: (a) HQ AFMC/PAX Memo, 26 Nov 01, Security and Policy Review, AFMC 01-242 (Atch 1) (b) HQ AFMC/PAX Memo, 19 Dec 01, Security and Policy Review, AFMC 01-275 (Atch 2) - (c) HQ AFMC/PAX Memo, 17 Jan 02, Security and Policy Review, AFMC 02-005 (Atch 3) - 1. Technical reports submitted in the attached references listed above are cleared for public release in accordance with AFI 35-101, 26 Jul 01, *Public Affairs Policies and Procedures*, Chapter 15 (Cases AFMC 01-242, AFMC 01-275, & AFMC 02-005). - 2. Please direct further questions to Lezora U. Nobles, AFMC CSO/SCOC, DSN 787-8583. LEZORA U. NOBLES AFMC STINFO Assistant Directorate of Communications and Information ## Attachments: - 1. HQ AFMC/PAX Memo, 26 Nov 01 - 2. HQ AFMC/PAX Memo, 19 Dec 01 - 3. HQ AFMC/PAX Memo, 17 Jan 02 cc: HQ AFMC/HO (Dr. William Elliott) ## DEPARTMENT OF THE AIR FORCE HEADQUARTERS AIR FORCE MATERIEL COMMAND WRIGHT-PATTERSON AIR FORCE BASE OHIO DEC 19 2001 ## MEMORANDUM FOR HQ AFMC/HO FROM: HQ AFMC/PAX SUBJECT: Security and Policy Review, AFMC 01-275 1. The reports listed in your attached letter were submitted for security and policy review IAW AFI 35-101, Chapter 15. They have been cleared for public release. 2. If you have any questions, please call me at 77828. Thanks. JAMES A. MORROW Security and Policy Review Office of Public Affairs Attachment: Your Ltr 18 November 2001 # MEMORANDUM FOR: HQ AFMC/PAX Attn: Jim Morrow FROM: HQ AFMC/HO SUBJECT: Releasability Reviews - 1. Please conduct public releasability reviews for the following attached Defense ... Technical Information Center (DTIC) reports: - a. Emergency Fuel Selector Valve Test on the J47-GE-27 Engine as Installed on F-86F Aircraft, January 1955; DTIC No. AD-056 013. - b. Phase II Performance and Serviceability Tests of the F-86F Airplane USAF No. 51-13506 with Pre-Turbine Modifications, June 1954; DTIC No. AD-037 710. - c. J-47 Jet Engine Compressor Failures, 7 April 1952; DTIC No. AD- 039 818. - d. Evaluation of Aircraft Armament Installation (F-86F with 206 RK Guns) Project Gun-Val, February 1955; DTIC No. AD-056 763. - e. A Study of Serviced-Imposed Maneuvers of Four Jet Fighter Airplanes in Relation to Their Handling Qualities and Calculated Dynamic Characteristics, 15 August 1955; DTIC No. AD- 068 899. - f. Fuel Booster Pump, 6 February 1953; DTIC No. AD- 007 226. - g. Flight Investigation of Stability Fix for F-86F Aircraft, 8 September 1953; DTIC No. AD- 032 259. - h. Investigation of Engine Operational Deficiencies in the F-86F Airplane, June 1953; DTIC No. AD- 015 749. - i. Operational Suitability Test of the T-160 20mm Gun Installation in F-86F-2 Aircraft, 29 April 1954; DTIC No. AD- 031 528. - j. Engineering Evaluation of Type T 160 Gun and Installation in F 86 Aircraft, September 1953; DTIC No. AD- 019 809. - k. Airplane and Engine Responses to Abrupt Throttle Steps as Determined from Flight Tests of Eight Jet-Propelled Airplanes, September 1959; DTIC No. AD-225 780. - 1. Improved F-86F: Combat Developed, 28 January 1953; DTIC No. AD- 003 153. - m. Flight Test Progress Report No. 19 for Week Ending February 27, 1953 for Model F-86F Airplane NAA Model No. NA-191, 5 March 1953; DTIC No. AD-006 806. - 2. These attachments have been requested by Dr. Kenneth P. Werrell, a private researcher. - 3. The AFMC/HO point of contact for these reviews is Dr. William Elliott, who may be reached at extension 77476. JOHN D. WEBER Command Historian ## 13 Attachments: - a. DTIC No. AD- 056 013 - b. DTIC No. AD- 037 710 - c. DTIC No. AD- 039 818 - d. DTIC No. AD- 056 763 - e. DTIC No. AD- 068 899 - f. DTIC No. AD- 007 226 - g. DTIC No. AD- 032 259 - h. DTIC No. AD- 015 749 - i. DTIC No. AD- 031 528 - j. DTIC No. AD- 019 809 - k. DTIC No. AD- 225 780 - 1. DTIC No. AD- 003 153 - m. DTIC No. AD- 006 806